

React Key Concepts
Second Edition

An in-depth guide to React’s core features

Maximilian Schwarzmüller

React Key Concepts
Second Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Publishing Product Manager: Lucy Wan
Acquisition Editor – Peer Reviews: Jane Dsouza
Project Editor: Janice Gonsalves
Senior Development Editor: Elliot Dallow
Copy Editor: Safis Editing
Technical Editor: Tejas Mhasvekar
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Presentation Designer: Ajay Patule
Developer Relations Marketing Executive: Priyadarshini Sharma

First published: December 2022
Second edition: December 2024

Production reference: 1231224

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83620-227-1

www.packt.com

www.packt.com

Contributors

About the Author
Maximilian Schwarzmüller is a professional web developer and bestselling online course instructor.
On Udemy, he is one of the most popular and biggest online instructors, teaching more than 3 million
students worldwide. Students can become developers by exploring his more than 40 courses, most of
them bestsellers in their respective categories.

Besides helping students from all over the world, Maximilian loves exploring and mastering new
technologies, building exciting digital products, and sharing his knowledge with fellow developers.
He’s driven by his passion for good code and engaging websites and apps.

I may be the author of this book but planning, polishing, and publishing this book was really a group effort.

Most of all, I’m thankful for all the support from my wife Anna-Maria. You’re the love of my life!

I also want to thank my publisher, Packt: Thank you Bridget, Megan, Elliot, Janice, Lucy, Tejas, and everyone
else who was involved!

About the Reviewers
Cihan Yakar has over twenty years of experience in software development. He specializes in fullstack
development and machine learning, creating applications with .NET and Node.js. An enthusiastic
learner and knowledge sharer, Cihan often speaks at user group meetings. He is the founder of Bitsody
Software and Defne Software. He was also a technical reviewer of The TypeScript Workshop. To discover
more about his professional journey, feel free to connect with him on LinkedIn. When not working,
Cihan enjoys spending time with his family and indulging in his passion for all things Star Trek.

Slava Knyazev has been writing software since his early teenage years and is always seeking to find
ways to improve his mastery of the craft. He has worked for well-known names, including theScore,
Amazon Web Services, and Airbnb. When he isn’t writing code, he dives into technical topics on his
blog, Building Better Software Slower.

Eric Harvey is a consultant for Enwise Webtech LLC, focused on EdTech and secure systems in-
tegrations. He has worked in technology since 1998, his roles have included: applications engineer,
web developer, manager of learning systems at a major university, and solutions engineer. In 2005, he
founded a web development and hosting services company. Outside of work he is an avid collector of
board games and vintage computers, and plays mandolin in a local Celtic string band.

I would like to thank my kids – Amber, Nate, and Rylan – and my wife, Meredith, for being understanding,
patient, and always loving.

Join Us on Discord
Read this book alongside other users, AI experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions,
and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/ReactKeyConcepts2e

https://packt.link/ReactKeyConcepts2e

Table of Contents

Preface � xix

Chapter 1: React – What and Why � 1

Introduction ��� 1
What is React? ��� 2
The Problem with “Vanilla JavaScript” �� 2
React and Declarative Code �� 6

How React Manipulates the DOM • 9
Introducing SPAs ��� 10

Creating a React Project with Vite • 11
Summary and Key Takeaways �� 13

What’s Next? • 14
Test Your Knowledge! • 14

Chapter 2: Understanding React Components and JSX � 17

Introduction ��� 17
What Are Components? ��� 18

Why Components? • 18
The Anatomy of a Component • 19
What Exactly Are Component Functions? • 22

What Does React Do with All These Components? ��� 23
Built-In Components • 26
Naming Conventions • 27

JSX vs HTML vs Vanilla JavaScript �� 28
Using React without JSX • 30
JSX Elements Are Treated Like Regular JavaScript Values • 31
JSX Elements Must Have a Closing Tag • 33

Table of Contentsviii

Moving Beyond Static Content ��� 34
Outputting Dynamic Content • 34
Rendering Images • 35

When Should You Split Components? ��� 37
Summary and Key Takeaways �� 38

What’s Next? • 38
Test Your Knowledge! • 39

Apply What You Learned �� 39
Activity 2.1: Creating a React App to Present Yourself • 39
Activity 2.2: Creating a React App to Log Your Goals for This Book • 41

Chapter 3: Components and Props � 43

Introduction ��� 43
Can Components Do More? ��� 43
Using Props in Components ��� 44

Passing Props to Components • 44
Consuming Props in a Component • 45

Components, Props, and Reusability �� 46
The Special “children” Prop • 46
Which Components Need Props? • 47
How to Deal with Multiple Props • 48
Spreading Props • 49
Prop Chains/Prop Drilling • 51

Summary and Key Takeaways �� 52
What’s Next? • 52
Test Your Knowledge! • 52

Apply What You Learned �� 52
Activity 3.1: Creating an App to Output Your Goals for This Book • 53

Chapter 4: Working with Events and State � 55

Introduction ��� 55
What’s the Problem? �� 56

How Not to Solve the Problem • 56
A Better Incorrect Solution • 58
Improving the Solution by Properly Reacting to Events • 59

Table of Contents ix

Updating State Correctly �� 62
A Closer Look at useState() • 63

A Look Under the Hood of React • 65
Working with Multiple State Values �� 67

Using Multiple State Slices • 68
Managing Merged State Objects • 69
Updating State Based on Previous State Correctly • 71
Two-Way Binding • 75

Deriving Values from State ��� 76
Working with Forms and Form Submission • 79
Lifting State Up • 81

Summary and Key Takeaways �� 84
What’s Next? • 84
Test Your Knowledge! • 85

Apply What You Learned �� 85
Activity 4.1: Building a Simple Calculator • 85
Activity 4.2: Enhancing the Calculator • 86

Chapter 5: Rendering Lists and Conditional Content � 89

Introduction ��� 89
What Are Conditional Content and List Data? ��� 90
Rendering Content Conditionally ��� 90

Different Ways of Rendering Content Conditionally • 94
Utilizing Ternary Expressions • 94
Abusing JavaScript Logical Operators • 96
Get Creative! • 97
Which Approach is Best? • 98

Setting Element Tags Conditionally • 98
Outputting List Data �� 100

Mapping List Data • 102
Updating Lists • 104
A Problem with List Items • 106

Keys to the Rescue! • 109
Summary and Key Takeaways �� 110

What’s Next? • 111
Test Your Knowledge! • 111

Table of Contentsx

Apply What You Learned �� 111
Activity 5.1: Showing a Conditional Error Message • 112
Activity 5.2: Outputting a List of Products • 113

Chapter 6: Styling React Apps � 117

Introduction ��� 117
How Does Styling Work in React Apps? ��� 118

Using Inline Styles • 121
Setting Styles via CSS Classes • 123
Setting Styles Dynamically • 124
Conditional Styles • 126
Combining Multiple Dynamic CSS Classes • 127
Merging Multiple Inline Style Objects • 129
Building Components with Customizable Styles • 129

Customization with Fixed Configuration Options • 130
The Problem with Unscoped Styles �� 131

Scoped Styles with CSS Modules • 132
The styled-components Library • 135
Use the Tailwind CSS Library for Styling • 137
Using Other CSS or JavaScript Styling Libraries and Frameworks • 140

Summary and Key Takeaways �� 140
What’s Next? • 141
Test Your Knowledge! • 141

Apply What You Learned �� 141
Activity 6.1: Providing Input Validity Feedback upon Form Submission • 141
Activity 6.2: Using CSS Modules for Style Scoping • 143

Chapter 7: Portals and Refs � 145

Introduction ��� 145
A World without Refs ��� 146
Refs versus State ��� 149
Using Refs for More than DOM Access �� 151

Refs in Custom Components • 154
Controlled versus Uncontrolled Components • 160

React and Where Things End up in the DOM ��� 163
Portals to the Rescue • 165

Table of Contents xi

Summary and Key Takeaways �� 167
What’s Next? • 168
Test Your Knowledge! • 168

Apply What You Have Learned ��� 169
Activity 7.1: Extract User Input Values • 169
Activity 7.2: Add a Side Drawer • 170

Chapter 8: Handling Side Effects � 173

Introduction ��� 173
What’s the Problem? �� 174
Understanding Side Effects �� 176

Side Effects Are Not Just about HTTP Requests • 178
Dealing with Side Effects with the useEffect() Hook �� 179

How to Use useEffect() • 180
Effects and Their Dependencies ��� 182

Unnecessary Dependencies • 183
Cleaning Up after Effects • 185
Dealing with Multiple Effects • 189
Functions as Dependencies • 189
Avoiding Unnecessary Effect Executions • 194
Effects and Asynchronous Code • 201
Rules of Hooks • 202

Summary and Key Takeaways �� 203
What’s Next? • 204
Test Your Knowledge! • 204

Apply What You Learned �� 204
Activity 8.1: Building a Basic Blog • 205

Chapter 9: Handling User Input & Forms with Form Actions � 207

Introduction ��� 207
Handling Form Submissions without Actions ��� 208

Extracting User Input • 208
Tracking State • 209
Relying on Refs • 210
Taking Advantage of the event Object • 211

Which Solution Is Best? • 213

Table of Contentsxii

Handling Form Submissions with Actions �� 214
Synchronous vs Asynchronous Actions • 215

Behind the Scenes: Actions Are Transitions �� 217
Managing State Based on Form Submissions �� 219

Updating UI State with useActionState() • 219
Managing Pending UI State with useActionState() • 222

Handling Pending UI State with useFormStatus() • 224
Performing Optimistic Updates �� 226
Summary and Key Takeaways �� 230

What’s Next? • 231
Test Your Knowledge! • 231

Apply What You Learned �� 231
Activity 9.1: Managing a Feedback Form • 231

Chapter 10: Behind the Scenes of React and Optimization Opportunities � 235

Introduction ��� 235
Revisiting Component Evaluations and Updates ��� 236

What Happens When a Component Function Is Called • 238
The Virtual DOM vs the Real DOM �� 239

State Batching • 241
Avoiding Unnecessary Child Component Evaluations • 242
Avoiding Costly Computations • 247
Utilizing useCallback() • 251
Using the React Compiler • 253

Avoiding Unnecessary Code Download ��� 255
Reducing Bundle Sizes via Code Splitting (Lazy Loading) • 255

Strict Mode ��� 261
Debugging Code and the React Developer Tools �� 262
Summary and Key Takeaways �� 266

What’s Next? • 266
Test Your Knowledge! • 267

Apply What You Learned �� 267
Activity 10.1: Optimize an Existing App • 267

Chapter 11: Working with Complex State � 271

Introduction ��� 271

Table of Contents xiii

A Problem with Cross-Component State ��� 272
Using Context to Handle Multi-Component State �� 275

Providing and Managing Context Values • 276
Using Context in Nested Components • 281
Changing Context from Nested Components • 283

Using the Context API Efficiently �� 284
Getting Better Code Completion • 285
Context or Lifting State Up? • 285
Outsourcing Context Logic into Separate Components • 286
Combining Multiple Contexts • 287

Limitations of useState() ��� 288
Managing State with useReducer() �� 291

Understanding Reducer Functions • 291
Dispatching Actions • 293

Summary and Key Takeaways �� 296
What’s Next? • 297
Test Your Knowledge! • 297

Apply What You Learned �� 297
Activity 11.1: Migrating an App to the Context API • 297
Activity 11.2: Replacing useState() with useReducer() • 299

Chapter 12: Building Custom React Hooks � 301

Introduction ��� 301
Introducing Custom Hooks �� 301

Why Would You Build Custom Hooks? • 303
A First Custom Hook • 305

Custom Hooks: A Flexible Feature �� 308
Custom Hooks and Parameters • 309
Custom Hooks and Return Values • 310

A More Complex Example �� 312
Building a First Version of the Custom Hook • 314
Making the Hook Useful by Returning Values • 316
Improving Reusability by Accepting an Input Parameter • 317

Using Custom Hooks for Context Access ��� 320
Summary and Key Takeaways �� 322

What’s Next? • 322
Test Your Knowledge! • 323

Table of Contentsxiv

Apply What You Learned �� 323
Activity 12.1: Build a Custom Keyboard Input Hook • 323

Chapter 13: Multipage Apps with React Router � 325

Introduction ��� 325
One Page Is Not Enough ��� 326
Getting Started with React Router and Defining Routes ��� 326

Adding Page Navigation • 329
Working with Layouts & Nested Routes • 334
From Link to NavLink • 338
Route Components versus “Normal” Components • 340

From Static to Dynamic Routes �� 343
Extracting Route Parameters • 345
Creating Dynamic Links • 346
Navigating Programmatically • 348

Redirecting ��� 351
Handling Undefined Routes • 352
Lazy Loading • 352

Summary and Key Takeaways �� 354
What’s Next? • 355
Test Your Knowledge! • 355

Apply What You Learned �� 355
Activity 13.1: Creating a Basic Three-Page Website • 355

Chapter 14: Managing Data with React Router � 359

Introduction ��� 359
Data Fetching and Routing Are Tightly Coupled �� 360

Sending HTTP Requests without React Router • 361
Loading Data with React Router ��� 361

Getting Access to Loaded Data • 364
Loading Data for Dynamic Routes • 366
Loaders, Requests, and Client-Side Code • 367

Layouts Revisited �� 368
Reusing Data across Routes • 372

Handling Errors �� 374

Table of Contents xv

Onward to Data Submission ��� 376
Working with action() and Form Data • 380
Returning Data Instead of Redirecting • 383
Controlling Which <Form> Triggers Which Action • 385
Reflecting the Current Navigation Status • 386
Submitting Forms Programmatically • 388
Behind-the-Scenes Data Fetching and Submission • 389
Deferring Data Loading • 393

Summary and Key Takeaways �� 395
What’s Next? • 396
Test Your Knowledge! • 396

Apply What You Learned �� 396
Activity 14.1: A To-Dos App • 396

Chapter 15: Server-side Rendering & Building Fullstack Apps with Next.js � 401

Introduction ��� 401
What’s the Problem with Client-Side React Apps? �� 402
Making Sense of Server-side Rendering (SSR) ��� 403
Adding SSR to a React Application �� 404

Server-side Data Fetching Is Not Trivial • 405
Introducing Next.js ��� 407

Creating Next.js Projects • 408
Working with File-Based Routes • 410
Server-side Rendering with Next.js • 411
Working with Layouts • 412
Managing Internal Navigation • 415

Highlighting Active Links & Using the “use client” Directive • 415
Creating & Using Regular Components • 418
Handling Dynamic Routes • 420
Other Filename Conventions • 424

Diving Deeper into Next.js ��� 424
Summary and Key Takeaways �� 424

What’s Next? • 425
Test Your Knowledge! • 426

Apply What You Learned �� 426
Activity 15.1: Migrating a Vite-Based React Router App • 426

Table of Contentsxvi

Chapter 16: React Server Components & Server Actions � 429

Introduction ��� 429
The Problem with Server-side Data Fetching �� 430
Introducing RSCs �� 430

Making Sense of RSCs • 431
Creating & Using RSCs • 433
Unlocking RSCs in React Projects • 433
RSCs and Server Actions Can’t Be Used in All Projects • 438
RSCs vs Server-side Rendering • 439
RSCs vs Client Components • 440

Not All Components Should Be RSCs • 440
‘use client’ Affects Child Components, Too! • 442
Combining RSCs and Client Components • 444

Advanced Data Fetching with Next.js • 451
Managing Loading States with Next.js • 451

From Data Fetching to Data Mutations �� 453
Handling Data Mutations with Server Actions • 453
Unlocking Server Actions in React Projects • 453
Defining and Triggering Server Actions • 454
Handling User Input & Updating the UI • 455
Server Actions and useActionState() • 457
Storing Server Actions in Separate Files • 460

Summary and Key Takeaways �� 461
What’s Next? • 462
Test Your Knowledge! • 463

Apply What You Learned �� 463
Activity 16.1: Build a Mini Blog • 463

Chapter 17: Understanding React Suspense & The use() Hook � 467

Introduction ��� 467
Showing Granular Fallback Content with Suspense ��� 468

Using Suspense for Data Fetching with Next.js • 469
Using Suspense in Other React Projects—Possible, But Tricky • 472

Suspense Does Not Work with useEffect() • 473
Fetching Data while Rendering—the Incorrect Way • 474
Getting Suspense Support Is Tricky • 476

Table of Contents xvii

Using Suspense for Data Fetching with Supporting Libraries • 476
use()ing Data while Rendering • 478

Suspense Usage Patterns ��� 483
Revealing Content Together • 484
Revealing Content as Soon as Possible • 485
Nesting Suspended Content • 486

Should You Fetch Data via Suspense or useEffect()? ��� 487
Summary and Key Takeaways �� 488

What’s Next? • 488
Test Your Knowledge! �� 489
Apply What You Learned �� 489

Activity 17.1: Implement Suspense in the Mini Blog • 489

Chapter 18: Next Steps and Further Resources � 493

Introduction ��� 493
How Should You Proceed? �� 493

Become a Fullstack React Developer • 494
Interesting Problems to Explore • 494

Build a Shopping Cart • 495
Build an Application’s Authentication System (User Signup and Login) • 496
Build an Event Management Website • 496

Common and Popular React Libraries • 497
Using TypeScript • 498
Other Resources • 498
Beyond React for Web Applications • 498

Final Words ��� 499

Other Books You May Enjoy � 503

Index � 507

Preface

As the most popular JavaScript library for building modern, interactive user interfaces, React is an
in-demand framework that’ll bring real value to your career or next project. But like any technology,
learning React can be tricky, and finding the right teacher can make things a whole lot easier.

Maximilian Schwarzmüller is a bestselling instructor who has helped over three million students
worldwide learn how to code, and his latest React video course (React—The Complete Guide) has over
eight hundred thousand students on Udemy.

Max has written this in-depth reference to help you get to grips with the world of React programming.
Simple explanations, relevant examples, and a clear, concise approach make this fast-paced guide the
ideal resource for busy developers.

This book distills the core concepts of React and draws together its key features with neat summaries,
thus perfectly complementing other in-depth teaching resources. So, whether you’ve just finished
Max’s React video course and are looking for a handy reference tool, or you’ve been using a variety
of other learning material and now need a single study guide to bring everything together, this is the
ideal companion to support you through your next React projects. Plus, it’s fully up to date for React
19, so you can be sure you’re ready to go with the latest version.

Who This Book Is For
This book is designed for developers who already have some familiarity with React basics. It can be
used as a standalone resource to consolidate understanding or as a companion guide to a more in-depth
course. To get the most value from this book, it is recommended that you have some understanding
of the fundamentals of JavaScript, HTML, and CSS.

Prefacexx

What This Book Covers
Chapter 1, React – What and Why, will re-introduce you to React.js. Assuming that React.js is not brand-
new to you, this chapter will clarify which problems React solves, which alternatives exist, how React
generally works, and how React projects may be created.

Chapter 2, Understanding React Components and JSX, will explain the general structure of a React app
(a tree of components) and how components are created and used in React apps.

Chapter 3, Components and Props, will ensure that you are able to build reusable components by using
a key concept called “props”.

Chapter 4, Working with Events and State, will cover how to work with state in React components, which
different options exist (single state vs multiple state slices) and how state changes can be performed
and used for UI updates.

Chapter 5, Rendering Lists and Conditional Content, will explain how React apps can render lists of
content (e.g., lists of user posts) and conditional content (e.g., alert if incorrect values are entered
into an input field).

Chapter 6, Styling React Apps, will clarify how React components can be styled and how styles can be
applied dynamically or conditionally, touching on popular styling solutions like vanilla CSS, Tailwind
CSS, styled components, and CSS modules for scoped styles.

Chapter 7, Portals and Refs, will explain how direct DOM access and manipulation is facilitated via the
“refs” feature that is built-into React. In addition, you will learn how Portals may be used to optimize
the rendered DOM element structure.

Chapter 8, Handling Side Effects, will discuss the useEffect hook, explaining how it works, how it can
be configured for different use cases and scenarios, and how side effects can be handled optimally
with this React hook.

Chapter 9, Handling User Input & Forms with Form Actions, will explore how React simplifies the process
of handling forms by allowing you to define client-side form actions that are triggered upon submission.

Chapter 10, Behind the Scenes of React and Optimization Opportunities, will take a look behind the scenes
of React and dive into core topics like the virtual DOM, state update batching and key optimization
techniques that help you avoid unnecessary re-render cycles (and thus improve performance).

Chapter 11, Working with Complex State, will explain how the advanced React hook useReducer works,
when and why you might want to use it and how it, can be used in React components to manage more
complex component state with it. In addition, React’s Context API will be explored and discussed in
depth, allowing you to manage app-wide state with ease.

Preface xxi

Chapter 12, Building Custom React Hooks, will build up on the previous chapters and explore how you
can build your own, custom React hooks and what the advantage of doing so is.

Chapter 13, Multipage Apps with React Router, will explain what React Router is and how this extra
library can be used to build multipage experiences in a React single-page-application.

Chapter 14, Managing Data with React Router, will dive deeper into React Router and explore how this
package can also help with fetching and managing data.

Chapter 15, Server-side Rendering & Building Fullstack Apps with Next.js, will help you understand the
concept of server-side rendering (SSR) and help you use your React knowledge with the popular
Next.js framework to build applications that span across both the front and backend.

Chapter 16, React Server Components & Server Actions, will build upon the idea of building fullstack React
apps and explain how you may render components and handle form submissions on the server side.

Chapter 17, Understanding React Suspense & The use() Hook, will explain how React helps you provide
better user experiences by showing fallback content while data is being fetched.

Chapter 18, Next Steps and Further Resources, will cover the core and extended React ecosystem and
which resources may be helpful for next steps.

This book also comes with the following downloadable supplementary content:

•	 A cheatsheet accompanying every chapter of the book
•	 A video in which author Maximilian gives you his recommendations for next steps after fin-

ishing this book
•	 A video in which author Maximilian shares his thoughts about the future of React

Instructions for claiming this content are available at the end of the Preface.

Staying Up to Date with This Book
This edition of this book was written when React 19 was released, though most of the core concepts
explained throughout this book have beern around since React 18 or even before that. Thus, the vast
majority of the features covered in this book can be considered extremely stable and unlikely to
change in the near future.

But the book will also cover some relatively new React features, like server components or server
actions. Whilst breaking changes are also unlikely for those concepts, a document has been created
on GitHub to track any corrections or deviations you should be aware of when reading this book:
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md.

Following Along with the Book
Before you can successfully create and run React.js projects on your system, you will need to ensure
you have Node.js and npm (included with your installation by default) installed.

These are available for download at https://nodejs.org/en/.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md
https://nodejs.org/en/

Prefacexxii

The home page of this site should automatically provide you with the most recent installation options
for your platform and system. For more options, select Downloads in the site navigation bar. This
will open a new page through which you can explore all installation choices for all main platforms,
as shown in the screenshot below:

Installing React.js
React.js projects can be created in various ways, including custom-built project setups that incorpo-
rate webpack, babel and other tools. The recommended way for this book is the usage of the Vite tool
though. This tool and the process of creating a React app will be covered in Chapter 1, React – What
and Why, but you may refer to this section for step-by-step instructions on this task.

Perform the following steps to create a React.js project on your system:

1.	 Open your terminal (Powershell/Command Prompt for Windows; bash for Linux).
2.	 Use the make directory command to create a new project folder with a name of your choosing

(e.g., mkdir react-projects) and navigate to that directory using the change directory com-
mand (e.g., cd react-projects).

3.	 Enter the following command prompt to create a new project directory within this folder:

npm create vite@latest my-app

Preface xxiii

After running this command, choose React and JavaScript when prompted for input.

4.	 Once completed, navigate to your new directory using the cd command:

cd my-app

5.	 Open a terminal window in this new project directory and run the following command to
install all required dependencies:

npm install

6.	 Once this command is completed, in the same terminal, run the following command to start
a Node.js development server:

npm run dev

7.	 This command outputs a server address you can visit to preview the React application. By
default, the address is http://localhost:5173. Type that address in the address/location bar
to navigate to localhost:5173, as shown in the screenshot below:

Prefacexxiv

8.	 When you are ready to stop development for the time being, use Ctrl + C in the same terminal
as in Step 5 to quit running your server. To relaunch it, simply run the npm run dev command
in that terminal once again. Keep the process started by npm run dev up and running while
developing, as it will automatically update the website loaded on localhost:5173 with any
changes you make.

Download the Example Code Files
The code bundle for the book is hosted on GitHub at https://github.com/mschwarzmueller/book-
react-key-concepts-e2. We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the Color Images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://packt.link/gbp/9781836202271.

Conventions Used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file ex-
tensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Once the root
entry point has been defined, a method called render() can be called on the root object created via
createRoot().”

A block of code is set as follows:

import React from 'react';
import ReactDOM from 'react-dom/client';

import './index.css';
import App from './App.jsx';

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<App />);

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

import { memo } from 'react';

import classes from './Error.module.css';

function Error({ message }) {
 console.log('<Error /> component function is executed.');
 if (!message) {
 return null;

https://github.com/mschwarzmueller/book-react-key-concepts-e2
https://github.com/mschwarzmueller/book-react-key-concepts-e2
https://github.com/PacktPublishing/
https://packt.link/gbp/9781836202271

Preface xxv

 }

 return <p className={classes.error}>{message}</p>;
}

export default memo(Error);

Any command-line input or output is written as follows:

npm create vite@latest my-react-project

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “React simplifies the creation
and management of such UIs by moving from an imperative to a declarative approach.”

Get in Touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit
http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com

Share Your Thoughts
Once you’ve read React Key Concepts, Second Edition, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/183620227X
https://packt.link/r/183620227X

Download the Free PDF and Supplementary Content
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

Additionally, with this book you get access to supplementary/bonus content for you to learn more. You
can use this to add on to your learning journey on top of what you have in the book.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/supplementary-content-9781836202271

2.	 Submit your proof of purchase.
3.	 Submit your book code. You can find the code on page no. 169 of the book.
4.	 That’s it! We’ll send your free PDF, supplementary content, and other benefits to your email

directly

Description of Supplementary Content
This book comes with the following bonus material (claimable via the mechanism described above):

•	 A cheatsheet accompanying every chapter of the book
•	 A video in which author Maximilian gives you his recommendations for next steps after fin-

ishing this book
•	 A video in which author Maximilian shares his thoughts about the future of React

https://packt.link/supplementary-content-9781836202271

1
React – What and Why

Introduction
React.js (or just React, as it’s also called and as it’ll be referred to for the majority of this book) is one
of the most popular frontend JavaScript libraries – maybe even the most popular one, according to
a 2023 Stack Overflow developer survey. It is currently used by over 5% of the top 1,000 websites and
compared to other popular frontend JavaScript libraries and frameworks like Angular, React is leading
by a huge margin, when looking at key metrics like weekly package downloads via npm, which is a
tool commonly used for downloading and managing JavaScript packages.

Though it is certainly possible to write good React code without fully understanding how React works
and why you’re using it, you’ll likely be able to learn advanced concepts quicker and avoid errors when
trying to understand the tools you’re working with as well as the reasons for picking a certain tool in
the first place.

Therefore, before considering anything about its core concepts and ideas or reviewing example code,
you first need to understand what React actually is and why it exists. This will help you understand
how React works internally and why it offers the features it does.

If you already know why you’re using React, why solutions like React, in general, are being used in-
stead of vanilla JavaScript (i.e., JavaScript without any frameworks or libraries, more on this in the
next section), and what the idea behind React and its syntax is, you may, of course, skip this section
and jump ahead to the more practice-oriented chapters later in this book.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Describe what React is and why you would use it
•	 Compare React to web projects built with just JavaScript
•	 Explain the difference between imperative and declarative code
•	 Differentiate between single-page applications (SPAs) and multi-page apps
•	 Create new React projects

React – What and Why2

But if you only think that you know it and are not 100% certain, you should definitely read this chapter
first.

What is React?
React is a JavaScript library, and if you take a look at the official web page (the official React website
and documentation are available at this link: https://react.dev/), you learn that the creators call it

“The library for web and native user interfaces.”

But what does this mean?

First, it’s important to understand that React is a JavaScript library. As a reader of this book, you know
what JavaScript is and why you use JavaScript in the browser. JavaScript allows you to add interactivity
to your website since, with JavaScript, you can react to user events and manipulate the page after it is
loaded. This is extremely valuable as it allows you to build highly interactive web user interfaces (UIs).

But what is a “library” and how does React help with building UIs?

While you can have philosophical discussions about what a library is (and how it differs from a frame-
work), the pragmatic definition of a library is that it’s a collection of functionalities that you can use
in your code to achieve results that would normally require more code and work from your side.
Libraries can help you write more concise and possibly also less error-prone code and enable you to
implement certain features more quickly.

React is such a library – one that focuses on providing functionalities that help you create interactive
and reactive UIs. Indeed, React deals with more than web interfaces (i.e., websites loaded in brows-
ers). You can also build native apps for mobile devices with React and React Native, which is another
library that utilizes React under the hood. The React concepts covered in this book still apply, no matter
which target platform is chosen. But examples will focus on React for web browsers. No matter which
platform you’re targeting though, creating interactive UIs with just JavaScript can quickly become very
complex and overwhelming.

The Problem with “Vanilla JavaScript”
Vanilla JavaScript is a term commonly used in web development to refer to JavaScript without any
frameworks or libraries. That means you write all the JavaScript on your own, without falling back to
any libraries or frameworks that would provide extra utility functionalities. When working with va-
nilla JavaScript, you especially don’t use major frontend frameworks or libraries like React or Angular.

Using vanilla JavaScript generally has the advantage that visitors of a website have to download less
JavaScript code (as major frameworks and libraries typically are quite sizeable and can quickly add
50+ KB of extra JavaScript code that has to be downloaded).

The downside of relying on vanilla JavaScript is that you, as the developer, must implement all func-
tionalities from the ground up on your own. This can be error prone and highly time consuming.
Therefore, especially more complex UIs and websites can quickly become very hard to manage with
vanilla JavaScript.

https://react.dev/

Chapter 1 3

React simplifies the creation and management of such UIs by moving from an imperative to a declar-
ative approach. Though this is a nice sentence, it can be hard to grasp if you haven’t worked with
React or similar frameworks before. To understand it, the idea behind “imperative versus declarative
approaches,” and why you might want to use React instead of just vanilla JavaScript, it’s helpful to take
a step back and evaluate how vanilla JavaScript works.

Let’s look at a short code snippet that shows how you could handle the following UI actions with
vanilla JavaScript:

1.	 Add an event listener to a button to listen for click events.
2.	 Replace the text of a paragraph with new text once a click on the button occurs.

const buttonElement = document.querySelector('button');
const paragraphElement = document.querySelector('p');

function updateTextHandler() {
 paragraphElement.textContent = 'Text was changed!';
}

buttonElement.addEventListener('click', updateTextHandler);

This example is deliberately kept simple, so it’s probably not looking too bad or overwhelming. It’s
just a basic example to show how code is generally written with vanilla JavaScript (a more complex
example will be discussed later). But even though this example is straightforward to digest, working
with vanilla JavaScript will quickly reach its limits for feature-rich UIs and the code to handle various
user interactions accordingly also becomes more complex. Code can quickly grow significantly, so
maintaining it can become a challenge.

In the preceding example, code is written with vanilla JavaScript and, as a consequence, imperatively.
This means that you write instruction after instruction, and you describe every step that needs to be
taken in detail.

The code shown previously could be translated into these more human-readable instructions:

1.	 Look for an HTML element of the button type to obtain a reference to the first button on the
page.

2.	 Create a constant (i.e., a data container) named buttonElement that holds that button reference.
3.	 Repeat Step 1 but get a reference to the first element that is of type of p.
4.	 Store the paragraph element reference in a constant named paragraphElement.
5.	 Add an event listener to the buttonElement that listens for click events and triggers the

updateTextHandler function whenever such a click event occurs.
6.	 Inside the updateTextHandler function, use the paragraphElement to set its textContent to

"Text was changed!".

React – What and Why4

Do you see how every step that needs to be taken is clearly defined and written out in the code?

This shouldn’t be too surprising because that is how most programming languages work: you define a
series of steps that must be executed in order. It’s an approach that makes a lot of sense because the
order of code execution shouldn’t be random or unpredictable.

However, when working with UIs, this imperative approach is not ideal. Indeed, it can quickly become
cumbersome because, as a developer, you have to add a lot of instructions that, despite adding little
value, cannot simply be omitted. You need to write all the Document Object Model (DOM) instruc-
tions that allow your code to interact with elements, add elements, manipulate elements, and so on.

Your core business logic (e.g., deriving and defining the actual text that should be set after a click)
therefore often makes up only a small chunk of the overall code. When controlling and manipulating
web UIs with JavaScript, a huge chunk (often the majority) of your code is frequently made up of DOM
instructions, event listeners, HTML element operations, and UI state management.

As a result, you end up describing all the steps that are required to interact with the UI technically and
all the steps that are required to derive the output data (i.e., the desired final state of the UI).

The button-clicking example is not a complex example in general, but the vanilla JavaScript code for
implementing such a scenario can be overwhelming. You end up with lots of DOM selection, inser-
tion, and manipulation operations, as well as multiple lines of code that do nothing but manage event
listeners. Also, keeping the DOM updated, without introducing bugs or errors, can be a nightmare
since you must ensure that you update the right DOM element with the right value at the right time.
Here, you will find a screenshot of some example code for the described use case.

Note

This book assumes that you are familiar with the DOM. In a nutshell, the DOM is the
“bridge” between your JavaScript code and the HTML code of the website with which you
want to interact. Via the built-in DOM API, JavaScript is able to create, insert, manipulate,
delete, and read HTML elements and their content.

You can learn more about the DOM in this article: https://academind.com/tutorials/
what-is-the-dom.

Modern web UIs are often quite complex, with lots of interactivity going on behind the
scenes. Your website might need to listen for user input in an input field, send that entered
data to a server to validate it, output a validation feedback message on the screen, and
show an error overlay modal if incorrect data is submitted.

Note

The full, working, code can be found on GitHub at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/
vanilla-javascript.

https://academind.com/tutorials/what-is-the-dom
https://academind.com/tutorials/what-is-the-dom
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/vanilla-javascript
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/vanilla-javascript
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/vanilla-javascript

Chapter 1 5

If you take a look at the JavaScript code in the screenshot (or in the linked repository), you will probably
be able to imagine how a more complex UI is likely to look.

Figure 1.1: An example JavaScript code file that contains over 100 lines of code for a fairly trivial UI

This example JavaScript file already contains roughly 110 lines of code. Even after minifying (“minify-
ing” means that code is shortened automatically, e.g., by replacing long variable names with shorter
ones and removing redundant whitespace; in this case, via https://www.toptal.com/developers/
javascript-minifier) it and splitting the code across multiple lines thereafter (to count the raw lines
of code), it still has around 80 lines of code. That’s a full 80 lines of code for a simple UI with only
basic functionality. The actual business logic (i.e., input validation, determining whether and when
overlays should be shown, and defining the output text) only makes up a small fraction of the overall
code base – around 20 to 30 lines of code, in this case (around 20 after minifying).

That’s roughly 75% of the code spent on pure DOM interaction, DOM state management, and similar
boilerplate tasks.

As you can see by these examples and numbers, controlling all the UI elements and their different states
(e.g., whether an info box is visible or not) is a challenging task, and trying to create such interfaces
with just JavaScript often leads to complex code that might even contain errors.

That’s why the imperative approach, wherein you must define and write down every single step, has
its limits in situations like this. This is the reason why React provides utility functionalities that allow
you to write code differently: with a declarative approach.

https://www.toptal.com/developers/javascript-minifier
https://www.toptal.com/developers/javascript-minifier

React – What and Why6

React and Declarative Code
Coming back to the first, simple code snippet from earlier, here’s that same code snippet, this time
using React:

import { useState } from 'react';

function App() {
 const [outputText, setOutputText] = useState('Initial text');

 function updateTextHandler() {
 setOutputText('Text was changed!');
 }

 return (
 <>
 <button onClick={updateTextHandler}>
 Click to change text
 </button>
 <p>{outputText}</p>
 </>
);
}

This snippet performs the same operations as the first did with just vanilla JavaScript:

1.	 Add an event listener to a button to listen for click events (now with some React-specific
syntax: onClick={…}).

2.	 Replace the text of a paragraph with a new text once the click on the button occurs.

Nonetheless, this code looks totally different – like a mixture of JavaScript and HTML. Indeed, React
uses a syntax extension called JSX (i.e., JavaScript extended to include XML-like syntax). For the mo-
ment, it’s enough to understand that this JSX code will work because of a pre-processing (or transpila-
tion) step that’s part of the build workflow of every React project.

Note

This is not a scientific paper, and the preceding example is not meant to act as an exact
scientific study. Depending on how you count lines and which kind of code you consider
to be “core business logic,” you will end up with higher or lower percentage values. The
key message doesn’t change though: lots of code (in this case most of it) deals with the
DOM and DOM manipulation – not with the actual logic that defines your website and
its key features.

Chapter 1 7

Pre-processing means that certain tools, which are part of React projects, analyze and transform the
code before it is deployed. This allows for development-only syntax like JSX, which would not work
in the browser and is for that reason transformed to regular JavaScript before deployment. (You’ll get
a thorough introduction to JSX in Chapter 2, Understanding React Components and JSX.)

In addition, the snippet shown previously contains a React-specific feature: State. state will be discussed
in greater detail later in the book (Chapter 4, Working with Events and State, will focus on handling events
and states with React). For the moment, you can think of this state as a variable that, when changed,
will trigger React to update the UI in the browser.

What you see in the preceding example is the “declarative approach” used by React: you write your
JavaScript logic (e.g., functions that should eventually be executed), and you combine that logic with
the HTML code that should trigger it or that is affected by it. You don’t write the instructions for select-
ing certain DOM elements or changing the text content of some DOM elements. Instead, with React
and JSX, you focus on your JavaScript business logic and define the desired HTML output that should
eventually be reached. This output can, and typically will, contain dynamic values that are derived
inside of your main JavaScript code.

In the preceding example, outputText is some state managed by React. In the code, the
updateTextHandler function is triggered upon a click, and the outputText state value is set to a new
string value ('Text was changed!') with the help of the setOutputText function. The exact details
of what’s going on here will be explored in Chapter 4.

The general idea, though, is that the state value is changed and, since it’s being referenced in the last
paragraph (<p>{outputText}</p>), React outputs the current state value in that place in the actual
DOM (and hence, on the actual web page). React will keep the paragraph updated, and therefore, when-
ever outputText changes, React will select this paragraph element again and update its textContent
automatically.

This is the declarative approach in action. As a developer, you don’t need to worry about the technical
details (for example, selecting the paragraph and updating its textContent). Instead, you will hand
this work off to React. You will only need to focus on the desired end states where the goal simply is to
output the current value of outputText in a specific place (i.e., in the second paragraph in this case)
on the page. It’s React’s job to do the “behind the scenes” work of getting to that result.

It turns out that this code snippet isn’t shorter than the vanilla JavaScript one; indeed, it’s actually
even a bit longer. But that’s only the case because this first snippet was deliberately kept simple and
concise. In such cases, React actually adds a bit of overhead code. If that were your entire UI, using
React indeed wouldn’t make too much sense. Again, this snippet was chosen because it allows us to
see the differences at a glance. Things change if you take a look at the more complex vanilla JavaScript
example from before and compare that to its React alternative.

Note

Referenced code can be found on GitHub at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/
vanilla-javascript and https://github.com/mschwarzmueller/book-react-key-
concepts-e2/tree/01-what-is-react/examples/example-1/reactjs, respectively.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/vanilla-javascript
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/vanilla-javascript
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/vanilla-javascript
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/reactjs
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/reactjs

React – What and Why8

Figure 1.2: The code snippet from before is now implemented via React

It’s still not short because all the JSX code (i.e., the HTML output) is included in the JavaScript file.
If you ignore pretty much the entire right side of that screenshot (since HTML was not part of the
vanilla JavaScript files either), the React code gets much more concise. However, most importantly,
if you take a closer look at all the React code (also in the first, shorter snippet), you will notice that
there are absolutely no operations that would select DOM elements, create or insert DOM elements,
or edit DOM elements.

This is the core idea of React. You don’t write down all the individual steps and instructions; instead,
you focus on the “big picture” and the desired end states of your page content. With React, you can
merge your JavaScript and markup code without having to deal with the low-level instructions of in-
teracting with the DOM like selecting elements via document.getElementById() or similar operations.

Using this declarative approach instead of the imperative approach with vanilla JavaScript allows
you, the developer, to focus on your core business logic and the different states of your HTML code.
You don’t need to define all the individual steps that have to be taken (like “adding an event listener,”

“selecting a paragraph,” etc.), and this simplifies the development of complex UIs tremendously.

Chapter 1 9

Looking at React code for the first time, it can look very unfamiliar and strange. It’s not what you’re
used to from JavaScript. Still, it is JavaScript – just enhanced with this JSX feature and various Re-
act-specific functionalities (like state). It may be less confusing if you remember that you typically
define your UI (i.e., your content and its structure) with HTML. You don’t write step-by-step instruc-
tions there either but rather create a nested tree structure with HTML tags. You express your content,
the meaning of different elements, and the hierarchy of your UI by using different HTML elements
and nesting HTML tags.

If you keep this in mind, the “traditional” (vanilla JavaScript) approach of manipulating the UI should
seem rather odd. Why would you start defining low-level instructions like “insert a paragraph element
below this button and set its text to <some text>” if you don’t do that in HTML at all? React, in the end,
brings back that HTML syntax, which is far more convenient when it comes to defining content and
structure. With React, you can write dynamic JavaScript code side by side with the UI code (i.e., the
HTML code) that is affected by it or related to it.

How React Manipulates the DOM
As mentioned earlier, when writing React code, you typically write it as shown previously: you blend
HTML with JavaScript code by using the JSX syntax extension.

It is worth pointing out that JSX code does not run like this in browsers. It instead needs to be pre-pro-
cessed before deployment. The JSX code must be transformed into regular JavaScript code before being
served to browsers. The next chapter will take a closer look at JSX and what it’s transformed into. For
the moment, though, simply keep in mind that JSX code must be transformed.

Nonetheless, it is worth knowing that the code to which JSX will be transformed will also not contain
any DOM instructions. Instead, the transformed code will execute various utility methods and functions
that are built into React (in other words, those that are provided by the React package that need to be
added to every React project). Internally, React creates a virtual DOM-like tree structure that reflects
the current state of the UI. This book takes a closer look at this abstract, virtual DOM, and how React
works in Chapter 10, Behind the Scenes of React and Optimization Opportunities. That’s why React (the
library) splits its core logic across two main packages:

•	 The main react package
•	 The react-dom package

The main react package is a third-party JavaScript library that needs to be imported into a project
to use React’s features (like JSX or state) there. It’s this package that creates this virtual DOM and
derives the current UI state. But you also need the react-dom package in your project if you want to
manipulate the DOM with React.

Note

It is worth emphasizing that React is not a great solution if you’re working on a very simple
UI. If you can solve a problem with a few lines of vanilla JavaScript code, there is probably
no strong reason to integrate React into the project.

React – What and Why10

The react-dom package, specifically the react-dom/client part of that package, acts as a “translation
bridge” between your React code, the internally generated virtual DOM, and the browser with its
actual DOM that needs to be updated. It’s the react-dom package that will produce the actual DOM
instructions that will select, update, delete, and create DOM elements.

This split exists because you can also use React with other target environments. A very popular and
well-known alternative to the DOM (i.e., to the browser) would be React Native, which allows devel-
opers to build native mobile apps with the help of React. With React Native, you also include the react
package in your project, but in place of react-dom, you would use the react-native package. In this
book, “React” refers to both the react package and the “bridge” packages (like react-dom).

Introducing SPAs
React can be used to simplify the creation of complex UIs, and there are two main ways of doing that:

•	 Manage parts of a website (e.g., a chat box in the bottom left corner).
•	 Manage the entire page and all user interactions that occur on it.

Both approaches are viable, but the more popular and common scenario is the second one: using React
to manage the entire web page, instead of just parts of it. This approach is more popular because most
websites that have complex UIs have not just one, but multiple complex elements on their pages. Com-
plexity would actually increase if you were to start using React for some website parts without using it
for other areas of the site. For this reason, it’s very common to manage the entire website with React.

This doesn’t even stop after using React on one specific page of the site. Indeed, React can be used to
handle URL path changes and update the parts of the page that need to be updated in order to reflect
the new page that should be loaded. This functionality is called routing and third-party packages like
react-router-dom (see Chapter 13, Multipage Apps with React Router), which integrate with React, allow
you to create a website wherein the entire UI is controlled via React.

A website that does not just use React for parts of its pages but instead for all subpages and for routing
is often built as a SPA because it’s common to create React projects that contain only one HTML file
(typically named index.html), which is used to initially load the React JavaScript code. Thereafter, the
React library and your React code take over and control the actual UI. This means that the entire UI
is created and managed by JavaScript via React and your React code.

Note

As mentioned earlier, this book focuses on React itself. The concepts explained in this
book, therefore, will apply to both web browsers and websites as well as mobile devices.
Nonetheless, all examples will focus on the web and react-dom since that avoids intro-
ducing extra complexity.

Chapter 1 11

That being said, it’s also becoming more and more popular to build full-stack React apps, where fron-
tend and backend code are merged. Modern React frameworks like Next.js simplify the process of
building such web apps. Whilst the core concepts are the same, no matter which kind of application is
built, this book will explore full-stack React app development in greater detail in Chapter 15, Server-side
Rendering & Building Fullstack Apps with Next.js, Chapter 16, React Server Components and Server Actions
and Chapter 17, Understanding React Suspense and the use() Hook.

Ultimately, this book prepares you for working with React on all kinds of React projects since the core
building blocks and key concepts are always the same.

Creating a React Project with Vite
To work with React, the first step is the creation of a React project. The official documentation recom-
mends using a framework like Next.js. But while this might make sense for complex web applications,
it’s overwhelming for getting started with React and for exploring React concepts. Next.js and other
frameworks introduce their own concepts and syntax. As a result, learning React can quickly become
frustrating since it can be difficult to tell React features apart from framework features. In addition,
not all React apps need to be built as full-stack web apps – consequently, using a framework like
Next.js might add unnecessary complexity.

That’s why Vite-based React projects have emerged as a popular alternative. Vite is an open-source
development and build tool that can be used to create and run web development projects based on
all kinds of libraries and frameworks – React is just one of the many options.

Vite creates projects that come with a built-in, preconfigured build process that, in the case of React
projects, takes care of the JSX code transpilation. It also provides a development web server that runs
locally on your system and allows you to preview the React app while you’re working on it.

You need a project setup like this because React projects typically use features like JSX, which wouldn’t
work in the browser without prior code transformation. Hence, as mentioned earlier, a pre-processing
step is required.

To create a project with Vite, you must have Node.js installed – preferably the latest (or latest LTS)
version. You can get the official Node.js installer for all operating systems from https://nodejs.org/.
Once you have installed Node.js, you will also gain access to the built-in npm command, which you can
use to utilize the Vite package to create a new React project.

You can run the following command inside of your command prompt (Windows), bash (Linux), or
terminal (macOS) program. Just make sure that you navigate (via cd) into the folder in which you want
to create your new project:

npm create vite@latest my-react-project

Once executed, this command will prompt you to choose a framework or library you want to use for
this new project. You should choose React and then JavaScript.

https://nodejs.org/

React – What and Why12

This command will create a new subfolder with a basic React project setup (i.e., with various files
and folders) in the place where you ran it. You should run it in some path on your system where you
have full read and write access and where you’re not conflicting with any system or other project files.

It’s worth noting that the project creation command does not install any required dependencies such
as the React library packages. For that reason, you must navigate into the created folder in your system
terminal or command prompt (via cd my-react-project) and install these packages by running the
following command:

npm install

Once the installation finishes successfully, the project setup process is complete.

To view the created React application, you can start a development server on your machine via this
command:

npm run dev

This invokes a script provided by Vite, which will spin up a locally running web server that pre-pro-
cesses, builds, and hosts your React-powered SPA – by default on localhost:5173. Therefore, while
working on the code, you typically have this development server up and running as it allows you to
preview and test code changes.

Best of all, this local development server will automatically update the website whenever you save
any code changes, hence allowing you to preview your changes almost instantly.

You can quit this server whenever you’re done for the day by pressing Ctrl + C in the terminal or com-
mand prompt where you executed npm run dev.

Whenever you’re ready to start working on the project again, you can restart the server via npm run dev.

The exact project structure (that is, the file names and folder names) may vary over time, but generally,
every new Vite-based React project contains a couple of key files and folders:

•	 A src/ folder, which contains the main source code files for the project:

•	 A main.jsx file, which is the main entry script file that will be executed first

Note

In case you encounter any issues with creating a React project, you can also download
and use the following starting project: https://github.com/mschwarzmueller/book-
react-key-concepts-e2/tree/01-what-is-react/react-starting-project. It’s a
project created via Vite, which can be used in the same way as if it were created with the
preceding command.

When using this starting project (or, in fact, any GitHub-hosted code snapshot belonging
to this book), you need to run npm install in the project folder first, before running
npm run dev.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/react-starting-project
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/react-starting-project

Chapter 1 13

•	 An App.jsx file, which contains the root component of the application (you’ll learn
more about components in the next chapter)

•	 Various styling (*.css) files, which are imported by the JavaScript files
•	 An assets/ folder that can be used to store images or other assets that should be used

in your React code

•	 A public/ folder, which contains static files that will be part of the final website (e.g., a favicon)
•	 An index.html file, which is the single HTML page of this website
•	 package.json and package-lock.json are files that list and define the third-party dependen-

cies of your project:

•	 Production dependencies like react or react-dom
•	 Development dependencies like eslint for automated code quality checks

•	 Other project configuration files (e.g., .gitignore for managing Git file tracking)
•	 A node_modules folder, which contains the actual code of the installed third-party packages

It’s worth noting that App.jsx and main.jsx use .jsx as a file extension, not .js. This is a file ex-
tension that’s enforced by Vite for files that do not just contain standard JavaScript but also JSX code.
When working on a Vite project, most of your project files will consequently use .jsx as an extension.

Almost all of the React-specific code will be written in the App.jsx file or custom component files that
will be added to the project. We will explore components in the next chapter.

Summary and Key Takeaways
•	 React is a library, though it’s actually a combination of two main packages: react and react-dom.
•	 Though it is possible to build non-trivial UIs without React, simply using vanilla JavaScript to

do so can be cumbersome, error prone, and hard to maintain.
•	 React simplifies the creation of complex UIs by providing a declarative way to define the de-

sired end states of the UI.

Note

package.json is the file in which you actually manage packages and their versions.
package-lock.json is created automatically (by Node.js). It locks in exact dependency
and sub-dependency versions, whereas package.json only specifies version ranges. You
can learn more about these files and package versions at https://docs.npmjs.com/.

The code of the project’s dependencies is stored in the node_modules folder. This folder can
become very big since it contains the code of all installed packages and their dependencies.
For that reason, it’s typically not included if projects are shared with other developers or
pushed to GitHub. The package.json file is all you need. By running npm install, the
node_modules folder will be recreated locally.

https://docs.npmjs.com/

React – What and Why14

•	 Declarative means that you define the target UI content and structure, combined with dif-
ferent states (e.g., “Is a modal open or closed?”), and you leave it up to React to figure out the
appropriate DOM instructions.

•	 The react package itself derives UI states and manages a virtual DOM. It is a “bridge,” like
react-dom or react-native, that translates this virtual DOM into actual UI (DOM) instructions.

•	 With React, you can build SPAs, meaning that React is used to control the entire UI on all pages
as well as the routing between pages.

•	 You can also use React, in combination with frameworks like Next.js, to build full-stack web
applications where server- and client-side code are connected.

•	 React projects can be created with the help of the Vite package, which provides a readily con-
figured project folder and a live preview development server.

What’s Next?
At this point, you should have a basic understanding of what React is and why you might consider using
it, especially for building non-trivial UIs. You learned how to create new React projects with Vite, and
you are now ready to dive deeper into React and the actual key features it offers.

In the next chapter, you will learn about a concept called components, which are the fundamental
building blocks of React apps. You will learn how components are used to compose UIs and why
those components are needed in the first place. The next chapter will also dive deeper into JSX and
explore how it is transformed into regular JavaScript code and which kind of code you could write
alternatively to JSX.

Test Your Knowledge!
Test your knowledge about the concepts covered in this chapter by answering the following questions.
You can then compare your answers to example answers that can be found here: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/01-what-is-react/exercises/questions-
answers.md.

1.	 What is React?
2.	 Which advantage does React offer over vanilla JavaScript projects?
3.	 What’s the difference between imperative and declarative code?
4.	 What is a Single-Page-Application (SPA)?
5.	 How can you create new React projects and why do you need such a complex project setup?

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/01-what-is-react/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/01-what-is-react/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/01-what-is-react/exercises/questions-answers.md

Chapter 1 15

Join Us on Discord
Read this book alongside other users, AI experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions,
and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/ReactKeyConcepts2e

https://packt.link/ReactKeyConcepts2e

2
Understanding React Components
and JSX

Introduction
In the previous chapter, you learned about React in general, what it is, and why you should consider
using it for building user interfaces. You also learned how to create React projects with the help of
Vite, by running npm create vite@latest <your-project-name>.

In this chapter, you will learn about one of the most important React concepts and building blocks.
You will learn that components are reusable building blocks that are used to build user interfaces.
In addition, JSX code will be discussed in greater detail so that you will be able to use the concept of
components and JSX to build your own first basic React apps.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Define what exactly components are
•	 Build and use components effectively
•	 Utilize common naming conventions and code patterns
•	 Describe the relationship between components and JSX
•	 Write JSX code and understand why it’s used
•	 Write React components without using JSX code
•	 Write your first React apps

Understanding React Components and JSX18

What Are Components?
A key concept of React is the usage of so-called components. Components are reusable building blocks
that are combined to compose the final user interface. For example, a basic website could be made
up of a sidebar that includes navigation items and a main section that includes elements for adding
and viewing tasks.

Figure 2.1: An example task management screen with sidebar and main area

If you look at this example page, you might be able to identify various building blocks (i.e., compo-
nents). Some of these components are even reused:

•	 The sidebar and its navigation items
•	 The main page area
•	 In the main area, the header with the title and due date
•	 A form for adding tasks
•	 A list of tasks

Please note that some components are nested inside other components—i.e., components are also
made up of other components. That’s a key feature of React and similar libraries.

Why Components?
No matter which web page you look at, they are all made up of building blocks like this. It’s not a
React-specific concept or idea. Indeed, HTML itself “thinks” in components if you take a closer look.
You have elements like , <header>, <nav>, etc., and you combine these elements to describe and
structure your website content.

But React embraces this idea of breaking a web page into reusable building blocks because it is an
approach that allows developers to work on small, manageable chunks of code. It’s easier and more
maintainable than working on a single, huge HTML (or React code) file.

Chapter 2 19

That’s why other libraries—both frontend libraries like React or Angular as well as backend libraries
and templating engines like EJS (Embedded JavaScript templates)—also embrace components (though
the names might differ, you also find “partials” or “includes” as common names).

When working with React, it’s especially important to keep your code manageable and work with small,
reusable components because React components are not just collections of HTML code. Instead, a
React component also encapsulates JavaScript logic and often also CSS styling. For complex user in-
terfaces, the combination of markup (JSX), logic (JavaScript), and styling (CSS) could quickly lead to
large chunks of code, thus making it difficult to maintain that code. Think of a large HTML file that
also includes JavaScript and CSS code. Working in such a code file wouldn’t be a lot of fun.

To make a long story short, when working on a React project, you will work with lots of components.
You will split your code into small, manageable building blocks and then combine these components
to form the overall user interface. It’s a key feature of React.

The Anatomy of a Component
Components are important. But what exactly does a React component look like? How do you write
React components on your own?

Here’s an example component:

import { useState } from 'react';

function SubmitButton() {
 const [isSubmitted, setIsSubmitted] = useState(false);

 function handleSubmit() {
 setIsSubmitted(true);
 };

 return (

Note

EJS is a popular templating engine for JavaScript. It’s especially popular for backend web
development with Node.js.

Note

When working with React, you should embrace this idea of working with components.
But technically, they’re optional. You could, theoretically, build very complex web pages
with one single component alone. It would not be much fun, and it would not be practical,
but it would technically be possible without any issues.

Understanding React Components and JSX20

 <button onClick={handleSubmit}>
 { isSubmitted ? 'Loading…' : 'Submit' }
 </button>
);
};

export default SubmitButton;

Typically, you would store a code snippet like this in a separate file (e.g., a file named SubmitButton.
jsx, stored inside a /components folder, which in turn resides in the /src folder of your React proj-
ect) and import it into other component files that need this component. .jsx is used as an extension
since the file contains JSX code. Vite enforces the usage of .jsx as a file extension if you’re writing
JSX code – storing such code in .js files is not allowed in Vite projects (even though it might work in
other React project setups).

The following component imports the component defined above and uses it in its return statement
to output the SubmitButton component:

import SubmitButton from './submit-button.jsx';

function AuthForm() {
 return (
 <form>
 <input type="text" />
 <SubmitButton />
 </form>
);
};

export default AuthForm;

The import statements you see in these examples are standard JavaScript import statements. The-
oretically, in Vite-based projects, you could omit the file extension (.jsx in this case) in the import
statement. However, it might be a good idea to include the extension since that’s in line with standard
JavaScript. When importing from third-party packages (like useState from the react package), no file
extension is added though – you just use the package name. import and export are standard JavaScript
keywords that help with splitting related code across multiple files. Things like variables, constants,
classes, or functions can be exported via export or export default so that they can then be used in
other files after importing them there.

Chapter 2 21

Of course, the components shown in these examples are highly simplified and also contain features
that you haven’t learned about yet (e.g., useState()). However, the general idea of having standalone
building blocks that can be combined should be clear.

When working with React, there are two alternative ways to define components:

•	 Class-based components (or “class components”): Components defined via the class keyword
•	 Functional components (or “function components”): Components that are defined via regular

JavaScript functions

In all the examples covered in this book, components are built as JavaScript functions. As a React
developer, you have to use one of these two approaches as React expects components to be functions
or classes.

In the examples above, there are a couple of other noteworthy things:

•	 The component functions carry capitalized names (e.g., SubmitButton)
•	 Inside the component functions, other “inner” functions can be defined (e.g., handleSubmit,

typically written in camelCase)
•	 The component functions return HTML-like code (JSX code)
•	 Features like useState() can be used inside the component functions
•	 The component functions are exported (via export default)
•	 Certain features (like useState or the custom component SubmitButton) are imported via

the import keyword

The following sections will take a closer look at these different concepts that make up components
and their code.

Note

If the concept of splitting code into multiple files and using import and export is brand-
new to you, you might want to dive into more basic JavaScript resources on this topic first.
For example, MDN has an excellent article that explains the fundamentals, which you
can find at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Modules.

Note

Until late 2018, you had to use class-based components for certain kinds of tasks—specifi-
cally, for components that use state internally. (State will be covered in Chapter 4, Working
with Events and State). However, in late 2018, a new concept was introduced: React Hooks.
This allows you to perform all operations and tasks with functional components. Conse-
quently, while still supported by React, class-based components are on their way out and
are not covered in this book.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

Understanding React Components and JSX22

What Exactly Are Component Functions?
In React, components are functions (or classes, but as mentioned above, those aren’t relevant anymore).

A function is a regular JavaScript construct, not a React-specific concept. This is important to note.
React is a JavaScript library and consequently uses JavaScript features (like functions); React is not a
brand-new programming language.

When working with React, regular JavaScript functions can be used to encapsulate HTML (or, to be
more precise, JSX) code and JavaScript logic that belongs to that markup code. However, it depends
on the code you write in a function whether it qualifies to be treated as a React component or not. For
example, in the code snippets above, the handleSubmit function is also a regular JavaScript function,
but it’s not a React component. The following example shows another regular JavaScript function that
doesn’t qualify as a React component:

function calculate(a, b) {
 return {sum: a + b};
};

Indeed, a function will be treated as a component and can therefore be used like an HTML element
in JSX code if it returns a renderable value (typically JSX code). This is very important. You can only
use a function as a React component in JSX code if it is a function that returns something that can be
rendered by React. The returned value technically doesn’t have to be JSX code, but in most cases, it
will be. You will see an example of non-JSX code being returned in Chapter 7, Portals and Refs.

In the code snippet where functions named SubmitButton and AuthForm were defined, those two
functions qualified as React components because they both returned JSX code (which is code that
can be rendered by React, making it renderable). Once a function qualifies as a React component,
it can be used like an HTML element inside of JSX code, just as <SubmitButton /> was used like a
(self-closing) HTML element.

When working with vanilla JavaScript, you, of course, typically call functions to execute them. With
functional components, that’s different. React calls these functions on your behalf, and for that reason,
as a developer, you use them like HTML elements inside of this JSX code.

Note

When referring to renderable values, it is worth noting that by far the most common value
type being returned or used is indeed JSX code—i.e., markup defined via JSX. This should
make sense because, with JSX, you can define the HTML-like structure of your content
and user interface.

But besides JSX markup, there are a couple of other key values that also qualify as render-
able and therefore could be returned by custom components (instead of JSX code). Most
notably, you can also return strings or numbers as well as arrays that hold JSX elements
or strings or numbers.

Chapter 2 23

What Does React Do with All These Components?
If you follow the trail of all components and their import and export statements to the top, you will
find a root.render(...) instruction in the main entry script of the React project. Typically, this main
entry script can be found in the main.jsx file, located in the project’s src/ folder. This render() meth-
od, which is provided by the React library (to be precise, by the react-dom package), takes a snippet
of JSX code and interprets and executes it for you.

The complete snippet you find in the root entry file (main.jsx) typically looks like this:

import React from 'react';
import ReactDOM from 'react-dom/client';

import './index.css';
import App from './App.jsx';

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<App />);

The exact code you find in your new React project might look slightly different.

It may, for instance, include an extra <StrictMode> element that’s wrapped around <App>. <StrictMode>
turns on extra checks that can help catch subtle bugs in your React code. But it can also lead to confus-
ing behavior and unexpected error messages, especially when experimenting with React or learning
React. As this book is primarily interested in the coverage of React core features and key concepts,
<StrictMode> will not be used.

While omitted here, strict mode will be covered in Chapter 10, Behind the Scenes of React and Optimization
Opportunities. If you want to learn more about it right now, you can delve into the official documentation:
https://react.dev/reference/react/StrictMode. Just be aware that some of the effects triggered
by strict mode will be easier to understand after you’ve read more of this book.

To follow along smoothly then, cleaning up a newly created main.jsx file to look like the code snippet
above is a good idea.

The createRoot() method instructs React to create a new entry point, which will be used to inject
the generated user interface into the actual HTML document that will be served to website visitors.
The argument passed to createRoot() therefore is a pointer to a DOM element that can be found in
index.html—the single page that will be served to website visitors.

In many cases, document.getElementById('root') is used as an argument. This built-in vanilla Ja-
vaScript method yields a reference to a DOM element that is already part of the index.html document.
Hence, as a developer, you must ensure that such an element with the provided id attribute value (root,
in this example) exists in the HTML file into which the React app script is loaded. In a default React
project created via npm create vite@latest, this will be the case. You can find a <div id="root">
element in the index.html file in the root project folder.

https://react.dev/reference/react/StrictMode

Understanding React Components and JSX24

This index.html file is a relatively empty file that only acts as a shell for the React app. React just needs
an entry point (defined via createRoot()), which will be used to attach the generated user interface
to the displayed website. The HTML file and its content, as a result, do not directly define the website
content. Instead, the file just serves as a starting point for the React application, allowing React to
then take over and control the actual user interface.

Once the root entry point has been defined, a method called render() can be called on the root object
created via createRoot():

root.render(<App />);

This render() method tells React which content (i.e., which React component) should be injected into
that root entry point. In most React apps, this is a component called App. React will then generate
appropriate DOM-manipulating instructions to reflect the markup defined via JSX in the App compo-
nent on the actual web page.

This App component is a component function that is imported from some other file. In a default React
project, the App component function is defined and exported in an App.jsx file, which is also located
in the src/ folder.

This component, which is handed to render() (<App />, typically), is also called the root component of
the React app. It’s the main component that is rendered to the DOM. All other components are nested
in the JSX code of that App component or the JSX code of even more nested descendent components.
You can think of all these components building up a tree of components that is evaluated by React
and translated into actual DOM-manipulating instructions.

Figure 2.2: Nested React components form a component tree

Chapter 2 25

Either way, no matter whether you use a component function like an HTML element inside of JSX code
of other components or use it like an HTML element that’s passed as an argument to the render()
method, React takes care of interpreting and executing the component function on your behalf.

Of course, this is not a new concept. In JavaScript, functions are first-class objects, which means that
you can pass functions as arguments to other functions. This is basically what happens here, just with
the extra twist of using this JSX syntax, which is not a default JavaScript feature.

React executes these component functions for you and translates the returned JSX code into DOM
instructions. To be precise, React traverses the returned JSX code and dives into any other custom
components that might be used in that JSX code until it ends up with JSX code that is only made up
of native, built-in HTML elements (technically, it’s not really HTML, but that will be discussed later
in this chapter).

Take these two components as an example:

function Greeting() {
 return <p>Welcome to this book!</p>;
};

function App() {
 return (
 <div>
 <h2>Hello World!</h2>
 <Greeting />
 </div>
);
};

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<App />);

Note

As mentioned in the previous chapter, React can be used on various platforms. With the
react-native package, it could be used to build native mobile apps for iOS and Android.
The react-dom package, which provides the createRoot() method (and therefore, im-
plicitly, the render() method), is focused on the browser. It provides the “bridge” be-
tween React’s capabilities and the browser instructions that are required to bring the UI
(described via JSX and React components) to life in the browser. If you build for different
platforms, replacements for ReactDOM.createRoot() and render() are required (and,
of course, such alternatives do exist).

Understanding React Components and JSX26

The App component uses the Greeting component inside its JSX code. React will traverse the entire
JSX markup structure and derive this final JSX code:

root.render((
 <div>
 <h2>Hello World!</h2>
 <p>Welcome to this book!</p>
 </div>
), document.getElementById('root'));

This code will instruct React and ReactDOM to perform the following DOM operations:

1.	 Create a <div> element
2.	 Inside that <div>, create two child elements: <h2> and <p>
3.	 Set the text content of the <h2> element to 'Hello World!'
4.	 Set the text content of the <p> element to 'Welcome to this book!'
5.	 Insert the <div>, with its children, into the already-existing DOM element, which has the ID

'root'

This is a bit simplified, but you can think of React handling components and JSX code as described above.

Built-In Components
As shown in the earlier examples, you can create your own custom components by creating functions
that return JSX code. And indeed, that’s one of the main things you will do all the time as a React
developer: create component functions – lots of component functions.

But, ultimately, if you were to merge all JSX code into just one big snippet of JSX code, as shown in the
last example, you would end up with a chunk of JSX code that includes only standard HTML elements
like <div>, <h2>, <p>, and so on.

When using React, you don’t create brand-new HTML elements that the browser would be able to
display and handle. Instead, you create components that only work inside the React environment.
Before they reach the browser, they have been evaluated by React and “translated” into DOM-manip-
ulating JavaScript instructions (like document.append(…)).

Note

React doesn’t actually work with JSX code internally. It’s just easier to use as a developer.
Later, in this chapter, you will learn what JSX code gets transformed into and what the
actual code that React works with looks like.

Chapter 2 27

But keep in mind that all this JSX code is a feature that’s not part of the JavaScript language itself. It’s
basically syntactical sugar (i.e., a simplification regarding the code syntax) provided by the React
library and the project setup you’re using to write React code. Therefore, elements like <div>, when
used in JSX code, also aren’t normal HTML elements because you don’t write HTML code. It might
look like that, but it’s inside a .jsx file and it’s not HTML markup. Instead, it’s this special JSX code.
It is important to keep this in mind.

Accordingly, these <div> and <h2> elements you see in all these examples are also just React compo-
nents in the end. But they are not components built by you, but instead provided by React (or, to be
precise, by ReactDOM).

When working with React, you consequently always end up with these primitives—these built-in com-
ponent functions that are later translated to browser instructions that generate and append or remove
normal DOM elements. The idea behind building custom components is to group these elements
together such that you end up with reusable building blocks that can be used to build the overall UI.
But, in the end, this UI is made up of regular HTML elements.

Naming Conventions
All component functions that you can find in this book carry names like SubmitButton, AuthForm, or
Greeting.

You can generally name your React functions however you want—at least in the file where you are
defining them. But it is a common convention to use the PascalCase naming convention, wherein
the first character is uppercase and multiple words are grouped into one single word (SubmitButton
instead of Submit Button), where every “subword” then starts with another uppercase character.

In the place where you define your component function, it is only a naming convention, not a hard
rule. However, it is a hard rule in the place where you use the component functions—i.e., in the JSX
code where you embed your own custom components.

You can’t use your own custom component function as a component like this:

<greeting />

Note

Depending on your level of frontend web development knowledge, you might have heard
about a web feature called Web Components. The idea behind this feature is that you can
indeed build brand-new HTML elements with vanilla JavaScript.

As mentioned, React does not pick up this feature; you don’t build new custom HTML
elements with React.

Understanding React Components and JSX28

React forces you to use an uppercase starting character for your own custom component names when
using them in JSX code. This rule exists to give React a clear and easy way of telling custom components
apart from built-in components like <div>, etc. React only needs to look at the starting character to
determine whether it’s a built-in element or a custom component.

Besides the names of the actual component functions, it is also important to understand file nam-
ing conventions. Custom components are typically stored in separate files that live inside a src/
components/ folder. However, this is not a hard rule. The exact placement as well as the folder name
is up to you, but it should be somewhere inside the src/ folder. Using a folder named components/
is the standard though.

Whereas it is the standard to use PascalCase for the component functions, there is no general default
regarding file names. Some developers prefer PascalCase for file names as well; and, indeed, in brand-
new React projects, created as described in this book, the App component can be found inside a file
named App.jsx. Nonetheless, you will also encounter many React projects where components are
stored in files that follow the kebab-case naming convention. (All lowercase and multiple words are
combined into a single word via a dash). With this convention, component functions could be stored
in files named submit-button.jsx, for example.

Ultimately, it is up to you (and your team) which file naming convention you want to follow. In this
book, PascalCase will be used for file names.

JSX vs HTML vs Vanilla JavaScript
As mentioned above, React projects typically contain lots of JSX code. Most custom components will
return JSX code snippets. You can see this in all the examples shared thus far, and you will see it in
basically every React project you explore, no matter whether you are using React for the browser or
other platforms like react-native.

But what exactly is this JSX code? How is it different from HTML? And how is it related to vanilla
JavaScript?

JSX is a feature that’s not part of vanilla JavaScript. What can be confusing, though, is that it’s also not
directly part of the React library.

Instead, JSX is syntactical sugar that is provided by the build workflow that’s part of the overall Re-
act project. When you start the development web server via npm run dev or build the React app for
production (i.e., for deployment) via npm run build, you kick off a process that transforms this JSX
code back to regular JavaScript instructions. As a developer, you don’t see those final instructions but
React, the library, actually receives and evaluates them.

So, what does the JSX code get transformed to?

In modern React projects, it gets transformed to rather complex, unintuitive code that looks some-
thing like this:

function Ld() {
 return St.jsx('p', { children: 'Welcome to this book!' });
}

Chapter 2 29

Of course, this code is not very developer-friendly. It’s not the kind of code you would write. Instead,
it’s the code produced by Vite (i.e., by the underlying build process) for the browser to execute.

But you could, in theory, write code like this instead of using JSX—if, for some reason, you wanted to
avoid writing JSX code. React has a built-in method you can use instead of JSX: you can use React’s
createElement(…) method.

Here’s a concrete example, first in JSX:

function Greeting() {
 return <p>Hello World!</p>;
};

Instead of using JSX, you could also write this component code like this:

function Greeting() {
 return React.createElement('p', {}, 'Hello World!');
};

createElement() is a method built into the React library. It instructs React to create a paragraph el-
ement with 'Hello World!' as child content (i.e., as inner, nested content). This paragraph element
is then created internally first (via a concept called the virtual DOM, which will be discussed later in
the book, in Chapter 10, Behind the Scenes of React and Optimization Opportunities). Thereafter, once all
elements for all JSX elements have been created, the virtual DOM is translated into real DOM-manip-
ulating instructions that are executed by the browser.

The middle parameter value ({}, in the example) is a JavaScript object that may contain extra config-
uration for the element that is to be created.

Here’s an example where this middle argument becomes important:

function Advertisement() {
 return Visit my website;
};

Note

It has been mentioned before that React (in the browser) is actually a combination of two
packages: react and react-dom.

With the introduction of React.createElement(…), it’s now easier to explain how these
two packages work together: React creates this virtual DOM internally and then passes
it to the react-dom package. This package then generates the actual DOM-manipulating
instructions that must be executed in order to update the web page such that the desired
user interface is displayed there.

As mentioned, this will be covered in greater detail in Chapter 10.

Understanding React Components and JSX30

This would be transformed to the following:

function Advertisement() {
 return React.createElement(
 'a',
 { href: ' https://my-website.com ' },
 'Visit my website'
);
};

The last argument that’s passed to React.createElement(…) is the child content of the element—i.e.,
the content that should be between the element’s opening and closing tags. For nested JSX elements,
nested React.createElement(…) calls would be produced:

function Alert() {
 return (
 <div>
 <h2>This is an alert!</h2>
 </div>
);
};

This would be transformed like this:

function Alert() {
 return React.createElement(
 'div', {}, React.createElement('h2', {}, 'This is an alert!')
);
};

Using React without JSX
Since all JSX code gets transformed to these native JavaScript method calls anyway, you can actually
build React apps and user interfaces with React without using JSX.

You can skip JSX entirely if you want to. Instead of writing JSX code in your components and all the
places where JSX is expected, you can simply call React.createElement(…).

For example, the following two snippets will produce exactly the same user interface in the browser:

function App() {
 return (
 <p>Please visit my Blog</p>
);
};

Chapter 2 31

The preceding snippet will ultimately be the same as the following:

function App() {
 return React.createElement(
 'p',
 {},
 [
 'Please visit my ',
 React.createElement(
 'a',
 { href: 'https://my-blog-site.com' },
 'Blog'
)
]
);
};

Of course, it’s a different question whether you would want to do this. As you can see in this example,
it’s way more cumbersome to rely on React.createElement(…) only. You end up writing a lot more
code and deeply nested element structures will lead to code that can become almost impossible to read.

That’s why, typically, React developers use JSX. It’s a great feature that makes building user interfaces
with React way more enjoyable. But it is important to understand that it’s neither HTML nor a vanilla
JavaScript feature, but that it instead is some syntactical sugar that gets transformed to function calls
behind the scenes.

JSX Elements Are Treated Like Regular JavaScript Values
Because JSX is just syntactical sugar that gets transformed, there are a couple of noteworthy concepts
and rules you should be aware of:

•	 JSX elements are just regular JavaScript values (functions, to be precise) in the end
•	 The same rules that apply to all JavaScript values also apply to JSX elements
•	 As a result, in a place where only one value is expected (e.g., after the return keyword), you

must only have one JSX element

This code would cause an error:

function App() {
 return (
 <p>Hello World!</p>
 <p>Let's learn React!</p>
);
};

Understanding React Components and JSX32

The code might look valid at first, but it’s actually incorrect. In this example, you would return two
values instead of just one. That is not allowed in JavaScript.

For example, the following non-React code would also be invalid:

function calculate(a, b) {
 return (
 a + b
 a - b
);
};

You can’t return more than one value. No matter how you write it.

Of course, you can return an array or an object though. For example, this code would be valid:

function calculate(a, b) {
 return [
 a + b,
 a - b
];
};

It would be valid because you only return one value: an array. This array contains multiple values, as
arrays typically do. That would be fine and the same would be the case if you used JSX code:

function App() {
 return [
 <p>Hello World!</p>,
 <p>Let's learn React!</p>
];
};

This kind of code would be allowed since you are returning one array with two elements inside of it.
The two elements are JSX elements in this case, but as mentioned earlier, JSX elements are just regular
JavaScript values. Thus, you can use them anywhere where values would be expected.

When working with JSX, you won’t see this array approach too often though—simply because it can
become annoying to remember wrapping JSX elements via square brackets. It also looks less like HTML,
which kind of defeats the purpose and core idea behind JSX (it was invented to allow developers to
write HTML code inside JavaScript files).

Instead, if sibling elements are required, as in these examples, a special kind of wrapping component
is used: a React fragment. That’s a built-in component that serves the purpose of allowing you to return
or define sibling JSX elements:

function App() {
 return (

Chapter 2 33

 <>
 <p>Hello World!</p>
 <p>Let's learn React!</p>
 </>
);
};

This special <>…</> element is available in most modern React projects (for instance, ones created
via Vite), and you can think of it wrapping your JSX elements with an array behind the scenes. Alter-
natively, you can also use <React.Fragment>…</React.Fragment>. Since some React projects might
not support the shorter <>…</> syntax, this built-in component is always available.

The parentheses (()) that are wrapped around the JSX code in all these examples are required to allow
for nice multiline formatting. Technically, you could put all your JSX code into one single line, but
that would be pretty unreadable. In order to split the JSX elements across multiple lines, just as you
typically do with regular HTML code in .html files, you need those parentheses; they tell JavaScript
where the returned value starts and ends.

Since JSX elements are regular JavaScript values (after being translated by the build process at least),
you can also use JSX elements in all the places where values can be used.

Thus far, that has been the case for all these return statements, but you can also store JSX elements
in variables or pass them as arguments to other functions:

function App() {
 const content = <p>Stored in a variable!</p>; // this works!
 return content;
};

This will be important once you dive into slightly more advanced concepts like conditional or repeated
content—something that will be covered in Chapter 5, Rendering Lists and Conditional Content.

JSX Elements Must Have a Closing Tag
Another important rule related to JSX elements is that they must always have a closing tag. Therefore,
JSX elements must be self-closing if there is no content between the opening and closing tags:

function App() {
 return ;
};

In regular HTML, you would not need that forward backslash at the end. Instead, regular HTML
supports void elements (i.e.,). You can add that forward slash there as well, but it’s
not mandatory.

When working with JSX, these forward slashes are mandatory if your element doesn’t contain any
child content.

Understanding React Components and JSX34

Moving Beyond Static Content
Thus far, in all these examples, the content that was returned was static. It was content like <p>Hello
World!</p>—which of course is content that never changes. It will always output a paragraph that
says, 'Hello World!'.

But most websites, of course, need to output dynamic content that may change (e.g., due to user input).
Similarly, you’ll have a hard time finding lots of websites without any images.

Thus, as a React developer, it’s important to know how to output dynamic content (and what “dynamic
content” actually means) and how to display images in a React app.

Outputting Dynamic Content
At this point in the book, you don’t yet have any tools to make the content more dynamic. To be precise,
React requires that state concept (which will be covered in Chapter 4, Working with Events and State) to
change the content that is displayed (e.g., upon user input or some other event).

Nonetheless, since this chapter is about JSX, it is worth diving into the syntax for outputting dynamic
content, even though it’s not yet truly dynamic:

function App() {
 const userName = 'Max';
 return <p>Hi, my name is {userName}!</p>;
};

This example technically still produces static output since userName never changes, but you can already
see the syntax for outputting dynamic content as part of the JSX code. You use opening and closing
curly braces ({…}) with a JavaScript expression (like the name of a variable or constant, as is the case
here) between those braces.

You can put any valid JavaScript expression between those curly braces. For example, you can also
call a function (e.g., {getMyName()}) or do simple inline calculations (e.g., {1 + 1}).

You can’t add complex statements like loops or if statements between those curly braces though.
Again, standard JavaScript rules apply. You output a (potentially) dynamic value, and therefore, any-
thing that produces a single value is allowed in that place. However, it’s worth noting that a few value
types can’t be used for outputting a value in JSX. For example, trying to output a JavaScript object in
JSX will cause an error.

It’s also worth noting that you’re not limited to outputting dynamic content between element tags.
Instead, you can also set dynamic values for attributes:

function App() {
 const userName = 'Max';
 return <input type="text" value={userName} />;
};

Chapter 2 35

Rendering Images
Most websites do not just display plain text. Instead, you often need to render images as well.

Of course, when working with React, you can use the default element like in any other web
project. But there are two important things to keep in mind when displaying images in React projects:

1.	 must be a self-closing tag.
2.	 When displaying local images stored inside of the src/ folder, you must import them into

your .jsx files.

As explained above, in the JSX elements must have a closing tag section, you can’t have void JSX elements,
i.e., elements without any closing tag.

In addition, when outputting locally stored images (i.e., images stored in the project’s src/ folder, not
on some remote server), you typically don’t set a string path to the image in your code.

You might be used to outputting images like this:

But React projects (e.g., when created with Vite) do involve some kind of build process. In most proj-
ects, the final project structure that will be deployed onto a server will look quite different from the
project structure you work on during development.

That being the case, if you store an image in the src/assets folder in a Vite-based React project, and
you use that as a path (), the image will not load on the
deployed website. It will not load there because the deployable folder structure will not contain a src/
assets folder anymore.

Indeed, you can get an idea of the production-ready folder structure by running npm run build. This
will build the project for deployment and produce a new dist folder in your project directory. It’s
the content of that dist folder that will be deployed onto some server. If you inspect that folder, you
won’t find a src folder in there.

Figure 2.3: The dist folder contains a different structure

Understanding React Components and JSX36

Put in other words: You can’t tell the exact path of a locally stored image in advance. That’s why you
should import the image file into your .jsx file. As a result, you’ll get a string value that will contain
the actual path (which will work in production). This value can then be set as a dynamic value for the
src attribute of the element:

import myImage from './assets/my-image.png';

function App() {
 return ;
};

This might look strange at first, but it is code that will work in pretty much all React projects. Behind
the scenes, this import gets analyzed by the underlying build process. The import statement then
gets removed, and the image path is hardcoded into the production-ready output code (i.e., the code
that’s stored in the dist folder).

There is one important exception though: if you store an image file (or, actually, any asset) in the
public/ folder of your project, you can directly reference its path.

For example, a demo.jpg image file stored in public/images/demo.jpg can be rendered and displayed
like this:

function App() {
 return ;
};

This works because the contents of the public/ folder are simply copied into the dist/ folder. Unlike
the src/ folder and its nested files, the public/ folder files skip the transpilation step.

Please note that the public folder name itself is not part of the paths referenced—it’s src="/images/
demo.jpg", not src="/public/images/demo.jpg".

Which approach should you use then? Store images in src/ or public/?

For most images, src/ is a sensible choice since the pre-processing step assigns a unique file name to
each imported file. As a result, files can be cached more efficiently once the application is deployed.

Any files imported in the root index.html file, or files where the file name must never change (e.g.,
because it’s also referenced by some other app, running on some other server) should typically go
into the public/ folder.

Thus, in most cases, when outputting images that are stored locally in your project, you should store
them in the src/ folder and then import them into your JSX files. When using images that are stored
on some remote server, you would instead use the full image URL:

function App() {
 return ;
};

Chapter 2 37

When Should You Split Components?
As you work with React and learn more and more about it, and as you dive into more challenging React
projects, you will most likely come up with one very common question: When should I split a single
React component into multiple separate components?

As mentioned earlier in this chapter, React is all about components, and it is therefore very common
to have dozens, hundreds, or even thousands of React components in a single React project.

When it comes to splitting a single React component into multiple smaller components, there is no
hard rule you must follow. As mentioned earlier, you could put all your UI code into one single, large
component. Alternatively, you could create a separate custom component for every single HTML
element and piece of content that you have in your UI. Both approaches are probably not that great.
Instead, a good rule of thumb is to create a separate React component for every data entity that can
be identified.

For example, if you’re outputting a “to-do” list, you could identify two main entities: the individual
to-do item and the overall list. In this case, it could make sense to create two separate components
instead of writing one bigger component.

The advantage of splitting your code into multiple components is that the individual components stay
manageable because there’s less code per component and component file.

However, when it comes to splitting components into multiple components, a new problem arises:
How do you make your components reusable and configurable?

import Todo from './todo.jsx';

function TodoList() {
 return (

 <Todo />
 <Todo />

);
};

In this example, all “to-dos” would be the same because we use the same <Todo /> component, which
can’t be configured. You might want to make it configurable by either adding custom attributes (<Todo
text="Learn React!" />) or by passing content between the opening and closing tags (<Todo>Learn
React!</Todo>).

And, of course, React supports this. In the next chapter, you will learn about a key concept called
props, which allows you to make your components configurable like this.

Understanding React Components and JSX38

Summary and Key Takeaways
•	 React embraces components: reusable building blocks that are combined to define the final

user interface
•	 Components must return renderable content – typically, JSX code that defines the HTML code

that should be produced in the end
•	 React provides a lot of built-in components: besides special components like <>…</>, you get

components for all standard HTML elements
•	 To allow React to tell custom components apart from built-in components, custom component

names have to start with capital letters when being used in JSX code (typically, PascalCase
naming is used)

•	 JSX is neither HTML nor a standard JavaScript feature – instead, it’s syntactical sugar provided
by build workflows that are part of all React projects

•	 You could replace JSX code with React.createElement(…) calls, but since this leads to signifi-
cantly more unreadable code, it’s typically avoided

•	 When using JSX elements, you must not have sibling elements in places where single values
are expected (e.g., directly after the return keyword)

•	 JSX elements must always be self-closing if there is no content between the opening and
closing tags

•	 Dynamic content can be output via curly braces (e.g., <p>{someText}</p>)
•	 Images can be rendered by referencing their paths (if stored remotely or in the public/ folder)

or by importing the image files into JSX files and outputting them with the dynamic content
syntax

•	 In most React projects, you split your UI code across dozens or hundreds of components, which
are then exported and imported in order to be combined again

What’s Next?
In this chapter, you learned a lot about components and JSX. The next chapter builds upon this key
knowledge and explains how you can make components reusable by making them configurable.

Before you continue, you can also practice what you have learned up to this point by going through
the questions and exercises below.

Chapter 2 39

Test Your Knowledge!
Test your knowledge about the concepts covered in this chapter by answering the questions below. You
can then compare your answers to example answers that can be found here: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/exercises/questions-
answers.md.

1.	 What’s the idea behind using components?
2.	 How can you create a React component?
3.	 What turns a regular function into a React component function?
4.	 Which core rules should you keep in mind regarding JSX elements?
5.	 How is JSX code handled by React and ReactDOM?

Apply What You Learned
With this and the previous chapter, you have all the knowledge you need to create a React project and
populate it with some first, basic components.

Below, you’ll find your first two practical activities for this book.

Activity 2.1: Creating a React App to Present Yourself
Suppose you are creating your personal portfolio page, and as part of that page, you want to output
some basic information about yourself (e.g., your name or age). You could use React and build a React
component that outputs this kind of information, as outlined in the following activity.

The aim is to create a React app as you learned in the previous chapter (i.e., create it via npm create
vite@latest <your-project-name> and run npm run dev to start the development server) and edit
the App.jsx file such that you output some basic information about yourself. You could, for example,
output your full name, address, job title, or other kinds of information. In the end, it is up to you what
content you want to output and which HTML elements you choose.

The idea behind this first exercise is that you practice project creation and working with JSX code.

The steps are as follows:

1.	 Create a new React project via npm create vite@latest <project>. Alternatively, you can
use the starting project snapshot provided here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-1-start.

2.	 Edit the App.jsx file in the /src folder of the created project and return JSX code with any
HTML elements of your choice to output basic information about yourself. You can use the
styles in the index.css file in the starting project snapshot to apply some styling.

3.	 Also, store an image in the src/assets folder and output it in the App component.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-1-start

Understanding React Components and JSX40

You should get output like this in the end:

Figure 2.4: The final activity result—some user information being output on the screen

You’ll find an example solution on GitHub: https://github.com/mschwarzmueller/book-react-
key-concepts-e2/blob/02-components-jsx/activities/practice-1/SOLUTION-INSTRUCTIONS.md.

Besides the linked instructions, you will also find the finished example solution code in the project
folder that contains the SOLUTIONS-INSTRUCTIONS.md file.

However, before you explore this solution, you should consider trying to solve this task on your own.
Even if your result deviates from the example solution, or if you fail to come up with a working applica-
tion, you’ll learn more by at least giving it a try because, as always in life, only practice makes perfect.

Note

Styling will of course differ. To get the same styling as shown in the screenshot, use my pre-
pared starting project, which you can find here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-
1-start.

Analyze the index.css file in that project to determine how to structure your JSX code
to apply the styles.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/activities/practice-1/SOLUTION-INSTRUCTIONS.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/activities/practice-1/SOLUTION-INSTRUCTIONS.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-1-start

Chapter 2 41

Activity 2.2: Creating a React App to Log Your Goals for This
Book
Suppose you are adding a new section to your portfolio site, where you plan to track your learning
progress. As part of this page, you plan to define and output your main goals for this book (e.g., “Learn
about key React features”, “Do all the exercises”, etc.).

The aim of this activity is to create another new React project in which you add multiple new com-
ponents. Each goal will be represented by a separate component, and all these goal components will
be grouped together into another component that lists all the main goals. In addition, you can add an
extra header component that contains the main title for the web page.

The steps to complete this activity are as follows:

1.	 Create a new React project via npm create vite@latest <project>, or use the project
starting snapshot provided here: https://github.com/mschwarzmueller/book-react-key-
concepts-e2/tree/02-components-jsx/activities/practice-2-start.

2.	 Inside the new project, create a components folder that contains multiple component files (for
the individual goals as well as for the list of goals and the page header).

3.	 Inside the different component files, define and export multiple component functions
(FirstGoal, SecondGoal, ThirdGoal, etc.) for the different goals (one component per file).

4.	 Also, define one component for the overall list of goals (GoalList) and another component
for the page header (Header).

5.	 In the individual goal components, return JSX code with the goal text and a fitting HTML ele-
ment structure to hold this content.

6.	 In the GoalList component, import and output the individual goal components.
7.	 Import and output the GoalList and Header components in the root App component (replace

the existing JSX code).

Apply any style of your choice. You can also use the index.css file that’s part of the starting project
snapshot for inspiration.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-2-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-2-start

Understanding React Components and JSX42

You should get the following output in the end:

Figure 2.5: The final page output, showing a list of goals

You’ll also find an example solution for this activity on GitHub: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/blob/02-components-jsx/activities/practice-2/SOLUTION-
INSTRUCTIONS.md.

As before, besides the linked instructions, you will also find the finished example solution code in the
project folder that contains the SOLUTIONS-INSTRUCTIONS.md file.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/activities/practice-2/SOLUTION-INSTRUCTIONS.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/activities/practice-2/SOLUTION-INSTRUCTIONS.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/activities/practice-2/SOLUTION-INSTRUCTIONS.md

3
Components and Props

Introduction
In the previous chapter, you learned about the key building block of any React-based user interface:
components. You learned why components matter, how they are used, and how you can build com-
ponents yourself.

You also learned about JSX, which is the HTML-like markup that’s typically returned by component
functions. It’s this markup that defines what should be rendered on the final web page (in other words,
which HTML markup should end up on the final web page that is being served to visitors).

Can Components Do More?
However, so far, those components haven’t been too useful. While you could use them to split your
web page content into smaller building blocks, the actual reusability of these components was pretty
limited. For example, every course goal that you might have as part of an overall course goal list would
go into its own component (if you decided to split your web page content into multiple components
in the first place).

If you think about it, this isn’t too helpful; it would be much better if different list items could share
one common component and you just configured that one component with different content or attri-
butes—just like how HTML works.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Build reusable React components
•	 Utilize a concept called props to make components configurable
•	 Build flexible user interfaces by combining components with props

Components and Props44

When writing plain HTML code and describing content with it, you use reusable HTML elements and
configure them with different content or attributes. For example, you have one <a> HTML element,
but thanks to the href attribute and the element child content, you can build an endless amount of
different anchor elements that point at different resources, as shown in the following snippet:

Use Google
Browse Free Tutorials

These two elements use the exact same HTML element (<a>) but lead to totally different links that
would end up on the web page (pointing to two totally different websites).

To fully unlock the potential of React components, it would, therefore, be very useful if you could
configure them just like regular HTML elements. And it turns out that you can do exactly that—with
another key React concept called props.

Using Props in Components
How do you use props in your components? And when do you need them?

The second question will be answered in greater detail a little bit later. For the moment, it’s enough
to know that you typically will have some components that are reusable and, therefore, need props
and some components that are unique and might not need props.

The “how” part of the question is the more important part at this point, and this part can be split into
two complementary problems:

1.	 Passing props to components
2.	 Consuming props in a component

Passing Props to Components
How would you want props and component configurability to work if you were to design React from
the ground up?

Of course, there would be a broad variety of possible solutions, but there is one great role model that
can be considered: HTML. As mentioned above, when working with HTML, you pass content and
configuration either between element tags or via attributes.

Fortunately, React components work just like HTML elements when it comes to configuring them.
Props are simply passed as attributes (to your component) or as child data between component tags,
and you can also mix both approaches:

•	 <Product id="abc1" price="12.99" />

•	 <FancyLink target="https://some-website.com">Click me</FancyLink>

For this reason, configuring components is quite straightforward—at least, if you look at them from
the consumer’s angle (in other words, at how you use them in JSX).

Chapter 3 45

Consuming Props in a Component
How can you get access to the prop values passed into a component, when writing that component’s
inner code?

Imagine you’re building a GoalItem component that is responsible for outputting a single goal item
(for example, a course goal or project goal) that will be part of an overall goals list.

The parent component JSX markup could look like this:

 <GoalItem />
 <GoalItem />
 <GoalItem />

Inside GoalItem, the goal (no pun intended) would be to accept different goal titles so that the same
component (GoalItem) can be used to output these different titles as part of the final list that’s displayed
to website visitors. Maybe the component should also accept another piece of data (for example, a
unique ID that is used internally).

That’s how the GoalItem component could be used in JSX, as shown in the following example:

 <GoalItem id="g1" title="Finish the book!" />
 <GoalItem id="g2" title="Learn all about React!" />

Inside the GoalItem component function, the plan would probably be to output dynamic content (in
other words, the data received via props) like this:

function GoalItem() {
 return {title} (ID: {id});
}

But this component function would not work. It has a problem: title and id are never defined inside
that component function. This code would, therefore, cause an error because you’re using a variable
that wasn’t defined.

Of course, these shouldn’t be defined inside the GoalItem component anyway, as the idea was to make
the GoalItem component reusable and receive different title and id values from outside the component
(i.e., from the component that renders the list of <GoalItem> components).

React provides a solution for this problem: a special parameter value that is passed into every compo-
nent function automatically by React. This is a special parameter that contains the extra configuration
data that is set on the component in JSX code, called the props parameter.

Components and Props46

The preceding component function could (and should) be rewritten like this:

function GoalItem(props) {
 return {props.title} (ID: {props.id});
}

The name of the parameter (props) is up to you, but using props as a name is a convention because
the overall concept is called props.

To understand this concept, it is important to keep in mind that these component functions are not
called by you somewhere else in your code and that, instead, React will call these functions on your
behalf. And since React calls these functions, it can pass extra arguments into them when calling them.

This props argument is indeed such an extra argument. React will pass it into every component func-
tion, irrespective of whether you defined it as an extra parameter in the component function definition.
However, if you didn’t define that props parameter in a component function, you, of course, won’t be
able to work with the props data in that component.

This automatically provided props argument will always contain an object (because React passes
an object as a value for this argument), and the properties of this object will be the “attributes” you
added to your component (such as the title or id) inside the JSX code where the component is used.

That’s why in this GoalItem component example, custom data can be passed via attributes (<GoalItem
id="g1" … />) and consumed via the props object and its properties ({props.title}).

Components, Props, and Reusability
Thanks to this props concept, components become actually reusable, instead of just being theoretically
reusable.

Outputting three <GoalItem> components without any extra configuration could only render the same
goal three times, since the goal text (and any other data you might need) would have to be hardcoded
into the component function.

By using props as described above, the same component can be used multiple times with different
configurations. That allows you to define some general markup structure and logic once (in the com-
ponent function) but then use it as often as needed with different configurations.

And if that sounds familiar, that is indeed exactly the same idea that applies to regular JavaScript (or
any other programming language) functions. You define logic once, and you can then call it multiple
times with different inputs to receive different results. It’s the same for components—at least when
embracing this props concept.

The Special “children” Prop
It was mentioned before that React passes this props object automatically into component functions.
That is indeed the case, and as described, this object contains all the attributes you set on the com-
ponent (in JSX) as properties.

Chapter 3 47

But React does not just package your attributes into this object; it also adds another extra property to
the props object: the special children property (a built-in property whose name is fixed, meaning
you can’t change it).

The children property holds a very important piece of data: the content you might have provided
between the component’s opening and closing tags.

Thus far, in the examples shown above, the components were mostly self-closing. <GoalItem id="…"
title="…" /> holds no content between the component tags. All the data is passed into the compo-
nent via attributes.

There is nothing wrong with this approach. You can configure your components with attributes only.
But for some pieces of data and some components, it might make more sense and be more logical to
actually stick to regular HTML conventions, passing that data between the component tags instead.
And the GoalItem component is actually a great example.

Which approach looks more intuitive?

1.	 <GoalItem id="g1" title="Learn React" />

2.	 <GoalItem id="g1">Learn React</GoalItem>

You might determine that the second option looks a bit more intuitive and in line with regular HTML
because, there, you would also configure a normal list item like this: <li id="li1">Some list item</
li>.

While you have no choice when working with regular HTML elements (you can’t add a goal attribute
to a just because you want to), you do have a choice when working with React and your own
components. It simply depends on how you consume props inside the component function. Both
approaches can work, depending on the internal component code.

Still, you might want to pass certain pieces of data between component tags, and the special children
property allows you to do just that. It contains any content you define between the component opening
and closing tags. Therefore, in the case of example 2 (in the list above), children would contain the
string "Learn React".

In your component function, you can work with the children value just as you work with any other
prop value:

function GoalItem(props) {
 return {props.children} (ID: {props.id});
}

Which Components Need Props?
It was mentioned before, but it is extremely important: props are optional!

React will always pass prop data into your components, but you don’t have to work with that prop pa-
rameter. You don’t even have to define it in your component function if you don’t plan on working with it.

Components and Props48

There is no hard rule that would define which components need props and which don’t. It comes with
experience and simply depends on the role of a component.

You might have a general Header component that displays a static header (with a logo, title, and so on),
and such a component probably needs no external configuration (in other words, no “attributes” or
other kinds of data passed into it). It could be self-contained, with all the required values hardcoded
into the component.

But you will also often build and use components like the GoalItem component (in other words, com-
ponents that do need external data to be useful). Whenever a component is used more than once in
your React app, there is a high chance that it will utilize props. However, the opposite is not necessarily
true. While you will have one-time components that don’t use props, you will absolutely also have
components that are only used once in the entire app and still take advantage of props. As previously
mentioned, it depends on the exact use case and component.

Throughout this book, you will see plenty of examples and exercises that will help you gain a deeper
understanding of how to build components and use props.

How to Deal with Multiple Props
As shown in the preceding examples, you are not limited to only one prop per component. Indeed, you
can pass and use as many props as your component needs—no matter if that’s 1 or 100 (or more) props.

Once you do create components with more than just two or three props, a new question might come
up: do you have to add all those props individually (in other words, as separate attributes), or can you
pass fewer attributes that contain grouped data, such as arrays or objects?

And indeed, you can. React allows you to pass arrays and objects as prop values as well. In fact, any
valid JavaScript value can be passed as a prop value!

This allows you to decide whether you want to have a component with 20 individual props (“attri-
butes”) or just one “big” prop. Here’s an example of where the same component is configured in two
different ways:

<Product title="A book" price={29.99} id="p1" />
// or
const productData = {title: 'A book', price: 29.99, id: 'p1'};
<Product data={productData} />

Of course, the component must also be adapted internally (in other words, in the component func-
tion) to expect either individual or grouped props. But since you’re the developer, that is, of course,
your choice.

Inside the component function, you can also make your life easier.

There is nothing wrong with accessing prop values via props.XYZ, but if you have a component that
receives multiple props, repeating props.XYZ over and over again could become cumbersome and
make the code a bit harder to read.

Chapter 3 49

You can use a default JavaScript feature to improve readability: object destructuring.

Object destructuring allows you to extract values from an object and assign those values to variables
or constants in a single step:

const user = {name: 'Max', age: 29};
const {name, age} = user; // <-- object destructuring in action
console.log(name); // outputs 'Max'

You can, therefore, use this syntax to extract all prop values and assign them to equally named vari-
ables directly at the start of your component function:

function Product({title, price, id}) { // destructuring in action
 … // title, price, id are now available as variables inside this function
}

You don’t have to use this syntax, but it can make your life easier.

Spreading Props
Imagine you’re building a custom component that should act as a “wrapper” around some other com-
ponent—a built-in component, perhaps.

For instance, you could be building a custom Link component that should return a standard <a> ele-
ment with some custom styling or logic added:

function Link({children}) {
 return {children};
};

This very simple example component returns a pre-configured <a> element. This custom Link com-
ponent configures the anchor element such that new pages are always opened in a new tab. In place
of the standard <a> element, you could use this Link component in your React app to get that behavior
out of the box for all your links.

But this custom component suffers from a problem: it’s a wrapper around a core element, but by cre-
ating your own component, you remove the configurability of that core element. If you were to use
this Link component in your app, how would you set the href prop to configure the link destination?

You might try the following:

<Link href="https://some-site.com">Click here</Link>

Note

For more information on object destructuring, MDN is a great place to dive deeper. You
can access this at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Destructuring_assignment.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Components and Props50

However, this example code wouldn’t work because Link doesn’t accept or use a href prop.

Of course, you could adjust the Link component function such that a href prop is used:

function Link({children, href}) {
 return {children}</
a>;
};

But what if you also wanted to ensure that the download prop could be added if needed?

Well, it’s true that you can always accept more and more props (and pass them on to the <a> element
inside your component), but this reduces the reusability and maintainability of your custom component.

A better solution is to use the standard JavaScript spread operator (i.e., the ... operator) and React’s
support for that operator when working with components.

For example, the following component code is valid:

function Link({children, config}) {
 return <a {...config} target="_blank" rel="noopener noreferrer">{children}</
a>;
};

In this example, config is expected to be a JavaScript object (i.e., a collection of key-value pairs). The
spread operator (...), when used in JSX code on a JSX element, converts that object into multiple props.

Consider this example config value:

const config = { href: 'https://some-site.com', download: true };

In this case, when spreading it on <a>, (i.e., <a {…config}>), the result would be the same as if you
had written this code:

An alternative, more common pattern uses yet another JavaScript feature: the rest property. That’s
a JavaScript pattern that allows you to group properties that have not been destructured into a new
object (which then only contains those properties).

function Link({children, ...props}) {
 return <a {...props} target="_blank" rel="noopener noreferrer">{children}</
a>;
};

In this example, when destructuring props, only the children prop is destructured; the other ones
are stored in a new object named props. The syntax is very similar to the spread operator syntax: you
use three dots (...). But here, you use the operator in front of the property that should contain all
remaining properties. Therefore, it’s the place where you use that operator that defines what it does.

Chapter 3 51

You can then use that rest property (props in the example) like any other object. In the example above,
it’s again used to spread its properties as props onto the <a> element.

Using this pattern allows you to use the Link component in a more natural way, where you don’t have
to create and use a separate configuration object:

<Link href="https://google.com">Can you google that for me?</Link>

These behaviors and patterns can be used to build reusable components that should still maintain the
configurability of the core element they may be wrapping. This helps you avoid long lists of pre-defined,
accepted props and improves the reusability of components.

Prop Chains/Prop Drilling
There is one last phenomenon that is worth noting when learning about props: prop drilling or prop
chains.

It’s a problem every React developer will encounter at some point. It occurs when you build a slightly
more complex React app that contains multiple layers of nested components that need to send data
to each other.

For example, assume that you have a NavItem component that should output a navigation link. Inside
that component, you might have another nested component, AnimatedLink, that outputs the actual
link (maybe with some nice animation styling).

The NavItem component could look like this:

function NavItem(props) {
 return <div><AnimatedLink target={props.target} text="Some text" /></div>;
}

And AnimatedLink could be defined like this:

function AnimatedLink(props) {
 return {props.text};
}

In this example, the target prop is passed through the NavItem component to the AnimatedLink
component. The NavItem component must accept the target prop because it must be passed on to
AnimatedLink.

That’s what prop drilling/prop chains is all about: you forward a prop from a component that doesn’t
really need it to another component that does need it.

Having some prop drilling in your app isn’t necessarily bad, and you can definitely accept it. But, if
you should end up with longer chains of props (in other words, multiple pass-through components),
you can use a solution that will be discussed in Chapter 11, Working with Complex States.

Components and Props52

Summary and Key Takeaways
•	 Props are a key React concept that make components configurable and, therefore, reusable.
•	 Props are automatically collected and passed into component functions by React.
•	 You decide (on a per-component basis) whether you want to use the props data (an object) or not.
•	 Props are passed into components like attributes or, via the special children prop, between

the opening and closing tags.
•	 You can use JavaScript features like destructuring, the rest property, or the spread operator to

write concise, flexible code.
•	 Since you are writing the code, it’s up to you how you want to pass data via props. Between the

tags or as attributes? A single grouped attribute or many single-value attributes? It’s up to you.

What’s Next?
Props allow you to make components configurable and reusable. Still, they are rather static. Data and,
therefore, the UI output doesn’t change. You can’t react to user events like button clicks.

But the true power of React only becomes visible once you do add events (and reactions to them).

In the next chapter, you will learn how you can add event listeners when working with React, and you
will learn how you can react (no pun intended) to events and change the (invisible and visible) state
of your application.

Test Your Knowledge!
Test your knowledge regarding the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to the example answers that can be found at https://github.
com/mschwarzmueller/book-react-key-concepts-e2/blob/03-components-props/exercises/
questions-answers.md:

1.	 Which “problem” do props solve?
2.	 How are props passed into components?
3.	 How are props consumed inside of a component function?
4.	 Which options exist for passing (multiple) props into components?

Apply What You Learned
With this and the previous chapters, you now have enough basic knowledge to build truly reusable
components.

Below, you will find an activity that allows you to apply all the knowledge, including the new props
knowledge, you have acquired so far.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/03-components-props/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/03-components-props/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/03-components-props/exercises/questions-answers.md

Chapter 3 53

Activity 3.1: Creating an App to Output Your Goals for This Book
This activity builds upon Activity 2.2, Creating a React App to Log Your Goals for This Book, from the
previous chapter. If you followed along there, you can use your existing code and enhance it by adding
props. Alternatively, you can also use the solution provided as a starting point that is accessible at
the following link: https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-
components-jsx/activities/practice-2.

The aim of this activity is to build reusable GoalItem components that can be configured via props.
Every GoalItem component should receive and output a goal title and a short description text, with
extra information about the goal.

The steps are as follows:

1.	 Complete the second activity from the previous chapter.
2.	 Replace the hardcoded goal item components with a new configurable component.
3.	 Output multiple goal components with different titles (via props).
4.	 Set the detailed text description for every goal between the goal component’s opening and

closing tags.

The final user interface might look like this:

Figure 3.1: The final result: multiple goals output below each other

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-2

Components and Props54

Note

You can find a full example solution here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/03-components-props/activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/03-components-props/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/03-components-props/activities/practice-1

4
Working with Events and State

Introduction
In the previous chapters, you learned how to build UIs with the help of React components. You also
learned about props—a concept and feature that enables React developers to build and reuse config-
urable components.

These are all important React features and building blocks, but with these features alone, you would
only be able to build static React apps (that is, web apps that never change). You would not be able to
change or update the content on the screen if you only had access to those features. You also would
not be able to react to any user events and update the UI in response to such events (for instance, to
show an overlay window upon a button click).

Put in other words, you would not be able to build real websites and web applications if you were
limited to just components and props.

Therefore, in this chapter, a brand-new concept is introduced: state. State is a React feature that al-
lows developers to update internal data and trigger a UI update based on such data adjustments. In
addition, you will learn how to react (no pun intended) to user events such as button clicks or text
being entered into input fields.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Add user event handlers (for example, for reacting to button clicks) to React apps
•	 Update the user interface (UI) via a concept called state
•	 Build real dynamic and interactive UIs (that is, so that they are not static anymore)

Working with Events and State56

What’s the Problem?
As outlined previously, at this point in the book, there is a problem with all React apps and sites you
might be building: they’re static. The UI can’t change.

To understand this issue a bit better, take a look at a typical React component, as you are able to build
it up to this point in the book:

function EmailInput() {
 return (
 <div>
 <input placeholder="Your email" type="email" />
 <p>The entered email address is invalid.</p>
 </div>
);
};

This component might look strange though. Why is there a <p> element that informs the user about
an incorrect email address?

Well, the goal might be to show that paragraph only if the user did enter an incorrect email address.
That is to say, the web app should wait for the user to start typing and evaluate the user input once
the user is done typing (that is, once the input loses focus). Then, the error message should be shown
if the email address is considered invalid (for example, an empty input field or a missing @ symbol).

But at the moment, with the React skills picked up thus far, this is something you would not be able to
build. Instead, the error message would always be shown since there is no way of changing it based
on user events and dynamic conditions. In other words, this React app is a static app, not dynamic.
The UI can’t change.

Of course, changing UIs and dynamic web apps are things you might want to build. Almost every
website that exists contains some dynamic UI elements and features. Therefore, that’s the problem
that will be solved in this chapter.

How Not to Solve the Problem
How could the component shown previously be made more dynamic?

The following is one solution you could come up with (spoiler, the code won’t work, so you don’t need to
try running it):

function EmailInput() {
 return (
 <div>
 <input placeholder="Your email" type="email" />
 <p></p>
 </div>

Chapter 4 57

);
};

const input = document.querySelector('input');
const errorParagraph = document.querySelector('p');

function evaluateEmail(event) {
 const enteredEmail = event.target.value;
 if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {
 errorParagraph.textContent = ' The entered email address is invalid.';
 } else {
 errorParagraph.textContent = '';
 }
};

input.addEventListener('blur', evaluateEmail);

This code won’t work, because you can’t select React-rendered DOM elements from inside the same
component file this way. This is just meant as a dummy example of how you could try to solve this. That
being said, you could put the code below the component function some place where it does execute
successfully (for example, into a setTimeout() callback that fires after a second, allowing the React
app to render all elements onto the screen).

Put in the right place, this code will add the email validation behavior described earlier in this chapter.
Upon the built-in blur event, the evaluateEmail function is triggered. This function receives the event
object as an argument (automatically, by the browser), and therefore the evaluateEmail function is
able to parse the entered value from that event object via event.target.value. The entered value
can then be used in an if check to conditionally display or remove the error message.

But what’s wrong with this code if it would work in some places of the overall application code?

It’s imperative code! That means you are writing down step-by-step instructions on what the browser
should do. You are not declaring the desired end state; you are instead describing a way of getting
there; and it’s not using React.

Note

All the preceding code that deals with the blur event (such as addEventListener) and
the event object, including the code in the if check, is standard JavaScript code. It is not
specific to React in any way.

If you find yourself struggling with this non-React code, it’s strongly recommended that
you dive into more vanilla JavaScript resources (such as the guides on the MDN website
at https://developer.mozilla.org/en-US/docs/Web/JavaScript) first.

https://developer.mozilla.org/en-US/docs/Web/JavaScript

Working with Events and State58

Keep in mind that React is all about controlling the UI and that writing React code is about writing
declarative code—instead of imperative code. Revisit Chapter 2, Understanding React Components and
JSX, if that sounds brand new to you.

You could achieve your goal by introducing this kind of code, but you would be working against React
and its philosophy (React’s philosophy being that you declare your desired end states and let React
figure out how to get there). A clear indicator of this is the fact that you would be forced to find the
right place for this kind of code in order for it to work.

This is not a philosophical problem, and it’s not just some weird hard rule that you should follow. Instead,
by working against React like this, you will make your life as a developer unnecessarily hard. You are
neither using the tools React gives you nor letting React figure out how to achieve the desired (UI) state.

That does not just mean that you spend time on solving problems you wouldn’t have to solve. It also
means that you’re passing up possible optimizations React might be able to perform under the hood.
Your solution is very likely not just leading to more work (that is, more code) for you; it also might
result in a buggy result that could also suffer from suboptimal performance.

The example shown previously is a simple one. Think about more complex websites and web apps,
such as online shops, vacation rental websites, or web apps such as Google Docs. There, you might
have dozens or hundreds of (dynamic) UI features and elements. Managing them all with a mixture
of React code and standard vanilla JavaScript code will quickly become a nightmare. Again, refer to
Chapter 2, Understanding React Components and JSX, of this book to understand the merits of React.

A Better Incorrect Solution
The naïve approach discussed previously doesn’t work well. It forces you to figure out how to make
the code run correctly (for example, by wrapping parts of it in some setTimeout() call to defer exe-
cution) and leads to your code being scattered all over the place (that is, inside of React component
functions, outside of those functions, and maybe also in totally unrelated files). How about a solution
that embraces React, like this:

function EmailInput() {
 let errorMessage = '';

 function evaluateEmail(event) {
 const enteredEmail = event.target.value;
 if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {
 errorMessage = ' The entered email address is invalid.';
 } else {
 errorMessage = '';
 }
 };

 const input = document.querySelector('input');

Chapter 4 59

 input.addEventListener('blur', evaluateEmail);

 return (
 <div>
 <input placeholder="Your email" type="email" />
 <p>{errorMessage}</p>
 </div>
);
};

This code again would not work (even though it’s technically valid JavaScript code). Selecting JSX el-
ements doesn’t work like this. It doesn’t work because document.querySelector('input') executes
before anything is rendered to the DOM (when the component function is executed for the first time).
Again, you would have to delay the execution of that code until the first render cycle is over (you would
therefore be once again working against React).

But even though it still would not work, it’s closer to the correct solution.

It’s closer to the ideal implementation because it embraces React way more than the first attempted
solution did. All the code is contained in the component function to which it belongs. The error mes-
sage is handled via an errorMessage variable that is output as part of the JSX code.

The idea behind this possible solution is that the React component that controls a certain UI feature
or element is also responsible for its state and events. You might identify two important keywords of
this chapter here!

This approach is definitely going in the right direction, but it still wouldn’t work for two reasons:

•	 Selecting the JSX <input> element via document.querySelector('input') would fail.
•	 Even if the input could be selected, the UI would not update as expected.

These two problems will be solved next—finally leading to an implementation that embraces React
and its features. The upcoming solution will avoid mixing React and non-React code. As you will see,
the result will be easier code where you have to do less work (that is, write less code).

Improving the Solution by Properly Reacting to Events
Instead of mixing imperative JavaScript code such as document.querySelector('input') with Re-
act-specific code, you should fully embrace React and its features.

Since listening to events and triggering actions upon events is an extremely common requirement,
React has a built-in solution. You can attach event listeners directly to the JSX elements to which they
belong.

The preceding example would be rewritten like this:

function EmailInput() {

Working with Events and State60

 let errorMessage = '';

 function evaluateEmail(event) {
 const enteredEmail = event.target.value;
 if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {
 errorMessage = 'The entered email address is invalid.';
 } else {
 errorMessage = '';
 }
 };

 return (
 <div>
 <input
 placeholder="Your email"
 type="email"
 onBlur={evaluateEmail} />
 <p>{errorMessage}</p>
 </div>
);
};

This code still will not update the UI, but at least the event is handled properly.

The onBlur prop was added to the built-in input element. This prop is made available by React, just as
all these base HTML elements (such as <input> and <p>) are made available as components by React.
In fact, all these built-in HTML components come with their standard HTML attributes as React props
(plus some extra props, such as the onBlur event handling prop).

React exposes all standard events that can be connected to DOM elements as onXYZ props (where XYZ
is the event name, such as blur or click, starting with a capital character). You can react to the blur
event by adding the onBlur prop. You could listen to a click event via the onClick prop. You get the idea.

These props require values to fulfill their job. To be precise, they need a pointer to the function that
should be executed when the event occurs. In the preceding example, the onBlur prop receives a
pointer to the evaluateEmail function as a value.

Note

For more information on standard events, see https://developer.mozilla.org/en-US/
docs/Web/Events#event_listing.

https://developer.mozilla.org/en-US/docs/Web/Events#event_listing
https://developer.mozilla.org/en-US/docs/Web/Events#event_listing

Chapter 4 61

By using these event props, the preceding example code will now finally execute without throwing any
errors. You could verify this by adding a console.log('Hello'); statement inside the evaluateEmail
function. This will display the 'Hello' text in the console of your browser developer tools, whenever
the input loses focus:

function EmailInput() {
 let errorMessage = '';

 function evaluateEmail(event) {
 console.log('Hello');
 const enteredEmail = event.target.value;
 if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {
 errorMessage = 'The entered email address is invalid.';
 } else {
 errorMessage = '';
 }
 };

 return (
 <div>
 <input
 placeholder="Your email"
 type="email"
 onBlur={evaluateEmail} />
 <p>{errorMessage}</p>
 </div>
);
};

Note

There’s a subtle difference between evaluateEmail and evaluateEmail(). The first is a
pointer to the function; the second actually executes the function (and yields the return
value, if any). Again, this is not something specific to React but a standard JavaScript
concept. If it’s not clear, this resource explains it in greater detail: https://developer.
mozilla.org/en-US/docs/Web/Events#event_listing.

https://developer.mozilla.org/en-US/docs/Web/Events#event_listing
https://developer.mozilla.org/en-US/docs/Web/Events#event_listing

Working with Events and State62

In the browser console, this looks as follows:

Figure 4.1: Displaying some text in the browser console upon removing focus from the input field

This is definitely one step closer to the best possible implementation, but it also still won’t produce
the desired result of updating the page content dynamically.

Updating State Correctly
By now, you understand how to correctly set up event listeners and execute functions upon certain
events. What’s missing is a feature that forces React to update the visible UI on the screen and the
content that is displayed to the app users.

That’s where React’s state concept comes into play. Like props, state is a key concept of React, but
whereas props are about receiving external data inside a component, state is about managing and
updating internal data. Most importantly, whenever state is updated, React goes ahead and updates
the parts of the UI that are affected by the state change.

Here’s how state is used in React (of course, the code will then be explained in detail afterward):

import { useState } from 'react';

function EmailInput() {
 const [errorMessage, setErrorMessage] = useState('');

 function evaluateEmail(event) {
 const enteredEmail = event.target.value;
 if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {
 setErrorMessage('The entered email address is invalid.');
 } else {
 setErrorMessage('');
 }
 };

 return (
 <div>
 <input

Chapter 4 63

 placeholder="Your email"
 type="email"
 onBlur={evaluateEmail} />
 <p>{errorMessage}</p>
 </div>
);
};

Compared to the example code discussed earlier in this chapter, this code doesn’t look much different.
But there is a key difference: the usage of the useState() Hook.

Hooks are another key concept of React. These are special functions that can only be used inside of
React components (or inside of other Hooks, as will be covered in Chapter 12, Building Custom React
Hooks). Hooks add special features and behaviors to the React components in which they are used.
For example, the useState() Hook allows a component (and therefore, implicitly React) to set and
manage some state that is tied to this component. React provides various built-in Hooks, and they are
not all focused on state management. You will learn about other Hooks and their purposes throughout
this book.

The useState() Hook is an extremely important and commonly used Hook as it enables you to manage
data inside a component, which, when updated, tells React to update the UI accordingly.

That is the core idea behind state management and this state concept: state is data, which, when
changed, should force React to re-evaluate a component and update the UI if needed.

Using Hooks, such as useState(), is pretty straightforward: you import them from 'react' and you
then call them like a function inside your component function. You call them like a function because,
as mentioned, React Hooks are functions—just special functions (from React’s perspective).

A Closer Look at useState()
How exactly does the useState() Hook work and what does it do internally?

By calling useState() inside a component function, you register some data with React. It’s a bit like
defining a variable or constant in vanilla JavaScript. But there is something special: React will track
the registered value internally, and whenever you update it, React will re-evaluate the component
function in which the state was registered.

React does this by checking whether the data used in the component changed. Most importantly,
React validates whether the UI needs to change because of changed data (for example, because a
value is output inside the JSX code). If React determines that the UI needs to change, it goes ahead
and updates the real DOM in the places where an update is needed (for example, changing some
text that’s displayed on the screen). If no update is needed, React ends the component re-evaluation
without updating the DOM.

React’s internal workings will be discussed in great detail Chapter 10, Behind the Scenes of React and
Optimization Opportunities.

Working with Events and State64

The entire process starts with calling useState() inside a component. This creates a state value
(which will be stored and managed by React) and ties it to a specific component. An initial state value
is registered by simply passing it as a parameter value to useState(). In the preceding example, an
empty string ('') is registered as a first value:

const [errorMessage, setErrorMessage] = useState('');

As you can see in the example, useState() does not just accept a parameter value. It also returns a
value: an array with exactly two elements.

The preceding example uses array destructuring, which is a standard JavaScript feature that allows
developers to retrieve values from an array and immediately assign them to variables or constants. In
the example, the two elements that make up the array returned by useState() are pulled out of that
array and stored in two constants (errorMessage and setErrorMessage). You don’t have to use array
destructuring when working with React or useState(), though.

You could also write the code like this instead:

const stateData = useState('');
const errorMessage = stateData[0];
const setErrorMessage = stateData[1];

This works absolutely fine, but when using array destructuring, the code stays a bit more concise.
That’s why you typically see the syntax using array destructuring when browsing React apps and ex-
amples. You also don’t have to use constants; variables (via let) would be fine as well. As you will see
throughout this chapter and the rest of the book, though, the variables won’t be reassigned, so using
constants makes sense (but it is not required in any way).

As mentioned before, useState() returns an array with exactly two elements. It will always be exactly
two elements—and always exactly the same kind of elements. The first element is always the current
state value, and the second element is a function that you can call to set the state to a new value.

But how do these two values (the state value and the state-updating function) work together? What does
React do with them internally? How are these two array elements used (by React) to update the UI?

Note

If array destructuring or the difference between variables and constants sounds brand
new to you, it’s strongly recommended that you refresh your JavaScript basics before pro-
gressing with this book. As always, MDN provides great resources for that (see http://
packt.link/3B8Ct for array destructuring, https://packt.link/hGjqL for information
on the let variable, and https://packt.link/TdPPS for guidance on the use of const).

http://packt.link/3B8Ct
http://packt.link/3B8Ct
https://packt.link/hGjqL
https://packt.link/TdPPS

Chapter 4 65

A Look Under the Hood of React
React manages the state values for you, in some internal storage that you, the developer, can’t directly
access. Since you often do need access to a state value (for instance, some entered email address, as
in the preceding example), React provides a way of reading state values: the first element in the array
returned by useState(). The first element of the returned array holds the current state value. You
can therefore use this element in any place where you need to work with the state value (for example,
in the JSX code to output it there).

In addition, you often also need to update the state—for example, because a user entered a new email
address. Since you don’t manage the state value yourself, React gives you a function that you can call
to inform React about the new state value. That’s the second element in the returned array.

In the example shown before, you call setErrorMessage('Error!') to set the errorMessage state
value to a new string ('Error!').

But why is this managed like this? Why not just use a standard JavaScript variable that you can assign
and reassign as needed?

Because React must be informed whenever there’s a state that impacts the UI changes. Otherwise, the
visible UI doesn’t change at all, even in cases where it should. React does not track regular variables
and changes to their values, so they have no influence on the state of the UI.

The state-updating function exposed by React (that second array element returned by useState())
does trigger some internal UI-updating effect though. This state-updating function does more than
set a new value; it also informs React that a state value changed and that the UI might therefore be
in need of an update.

So, whenever you call setErrorMessage('Error!'), React does not just update the value that it stores
internally; it also checks the UI and updates it when needed. UI updates can involve anything from
simple text changes up to the complete removal and addition of various DOM elements. Anything is
possible there!

React determines the new target UI by rerunning (also called re-evaluating) any component functions
that are affected by a state change. That includes the component function that executed the useState()
function that returned the state-updating function that was called. But it also includes any child com-
ponents, since an update in a parent component could lead to new state data that’s also used by some
child components (the state value could be passed to child components via props).

Working with Events and State66

If you need a visual of how all this fits together, consider the following diagram:

Figure 4.2: React state updating flow

It’s important to understand and keep in mind that React will re-execute (re-evaluate) a component
function if a state-updating function is called in the component function or some parent component
function. This also explains why the state value returned by useState() (that is, the first array element)
can be a constant, even though you can assign new values by calling the state-updating function (the
second array element). Since the entire component function is re-executed, useState() is also called
again (because all the component function code is executed again) and hence a new array with two
new elements is returned by React. The first array element is still the current state value.

However, as the component function was called because of a state update, the current state value is
now the updated value.

This can be a bit tricky to wrap your head around, but it is how React works internally. In the end, it’s
just about component functions being called multiple times by React, just as any JavaScript function
can be called multiple times.

Naming Conventions
The useState() Hook is typically used in combination with array destructuring, like this:

const [enteredEmail, setEnteredEmail] = useState('');

But when using array destructuring, the names of the variables or constants (enteredEmail and
setEnteredEmail, in this case) are up to you, the developer. Therefore, a valid question is how you
should name these variables or constants. Fortunately, there is a clear convention when it comes to
React and useState(), and these variable or constant names.

Chapter 4 67

The first element (that is, the current state value) should be named such that it describes what the
state value is all about. Examples would be enteredEmail, userEmail, providedEmail, just email,
or similar names. You should avoid generic names such as a or value or misleading names such as
setValue (which sounds like it is a function—but it isn’t).

The second element (that is, the state-updating function) should be named such that it becomes clear
that it is a function and that it does what it does. Examples would be setEnteredEmail or setEmail.
In general, the convention for this function is to name it setXYZ, where XYZ is the name you chose
for the first element, the current state value variable. (Note, though, that you start with an uppercase
character, as in setEnteredEmail, not setenteredEmail.)

Allowed State Value Types
Managing entered email addresses (or user input in general) is indeed a common use case and example
for working with state. However, you’re not limited to this scenario and value type.

In the case of entered user input, you will often deal with string values such as email addresses, pass-
words, blog posts, or similar values. But any valid JavaScript value type can be managed with the help
of useState(). You could, for example, manage the total sum of multiple shopping cart items—that
is, a number—or a Boolean value (for example, “Did a user confirm the terms of use?”).

Besides managing primitive value types, you can also store and update reference data types such as
objects and arrays.

React gives you the flexibility of managing all these value types as state. You can even switch the value
type at runtime (just as you can in vanilla JavaScript). It is absolutely fine to store a number as the
initial state value and update it to a string at a later point in time.

Just as with vanilla JavaScript, you should, of course, ensure that your program deals with this behavior
appropriately, though there’s nothing technically wrong with switching types.

Working with Multiple State Values
When building anything but very simple web apps or UIs, you will need multiple state values. Maybe
users can not only enter their email but also a username or their address. Maybe you also need to
track some error state or save shopping cart items. Maybe users can click a “like” button whose state
should be saved and reflected in the UI. There are many values that change frequently and whose
changes should be reflected in the UI.

Note

If the difference between primitive and reference data types is not entirely clear, it’s strong-
ly recommended that you dive into this core JavaScript concept before proceeding with
this book through the following link: https://academind.com/tutorials/reference-
vs-primitive-values.

https://academind.com/tutorials/reference-vs-primitive-values
https://academind.com/tutorials/reference-vs-primitive-values

Working with Events and State68

Consider this concrete scenario: you have a component that needs to manage both the value entered
by a user into an email input field and the value that was inserted into a password field. Each value
should be captured once a field loses focus.

Since you have two input fields that hold different values, you have two state values: the entered email
and the entered password. Even though you might use both values together at some point (for example,
to log a user in), the values are not provided simultaneously. In addition, you might also need every
value to stand alone, since you use it to show potential error messages (for example, “password too
short”) while the user is entering data.

Scenarios like this are very common, and therefore, you can also manage multiple state values with
the useState() Hook. There are two main ways of doing that:

1.	 Use multiple state slices (multiple state values)
2.	 Using one single, big state object

Using Multiple State Slices
You can manage multiple state values (also often called state slices) by simply calling useState()
multiple times in your component function.

For the example described previously, a (simplified) component function could look like this:

function LoginForm() {
 const [enteredEmail, setEnteredEmail] = useState('');
 const [enteredPassword, setEnteredPassword] = useState('');

 function handleUpdateEmail(event) {
 setEnteredEmail(event.target.value);
 };

 function handleUpdatePassword(event) {
 setEnteredPassword(event.target.value);
 };

 // Below, props are split across multiple lines for better readability
 // This is allowed when using JSX, just as it is allowed in standard HTML
 return (
 <form>
 <input
 type="email"
 placeholder="Your email"
 onBlur={handleUpdateEmail} />
 <input
 type="password"

Chapter 4 69

 placeholder="Your password"
 onBlur={handleUpdatePassword} />
 </form>
);
};

In this example, two state slices are managed by calling useState() twice. Therefore, React registers
and manages two state values internally. These two values can be read and updated independently
from each other.

You can register as many state slices (by calling useState() multiple times) as you need in a com-
ponent. You could have one state value, but you could also have dozens or even hundreds. Typically,
though, you will only have a couple of state slices per component since you should try to split bigger
components (which might be doing lots of different things) into multiple smaller components to keep
them manageable.

The advantage of managing multiple state values like this is that you can update them independently.
If the user enters a new email address, you only need to update that email state value. The password
state value doesn’t matter for your purposes.

A possible disadvantage could be that multiple state slices—and therefore multiple useState() calls—
lead to lots of lines of code that might bloat your component. As mentioned before, though, you typi-
cally should try to break up big components (that handle lots of different slices of state) into multiple
smaller components anyway.

Still, there is an alternative to managing multiple state values like this: you can also manage a single,
merged state value object.

Managing Merged State Objects
Instead of calling useState() for every single state slice, you can go for one big state object that com-
bines all the different state values:

function LoginForm() {
 const [userData, setUserData] = useState({
 email: '',

Note

In the example, the functions that are triggered upon events start with handle
(handleUpdateEmail and handleUpdatePassword). This is a convention used by some
React developers. Event handler functions start with handle… to make it clear that these
functions handle certain (user-triggered) events. This is not a convention you have to
follow. The functions could have also been named updateEmail, updatePassword,
emailUpdateHandler, passwordUpdateHandler, or anything else. If the name is mean-
ingful and follows some stringent convention, it’s a valid choice.

Working with Events and State70

 password: ''
 });

 function handleUpdateEmail(event) {
 setUserData({
 email: event.target.value,
 password: userData.password
 });
 };

 function handleUpdatePassword(event) {
 setUserData({
 email: userData.email,
 password: event.target.value
 });
 };

 // ... code omitted, because the returned JSX code is the same as before
};

In this example, useState() is called only once (i.e., there’s only one state slice), and the initial value
passed to useState() is a JavaScript object. The object contains two properties: email and password.
The property names are up to you, but they should describe the values that will be stored in the
properties.

useState() still returns an array with exactly two elements. That the initial value is an object does
not change anything about that. The first element of the returned array is now just an object instead
of a string (as it was in the examples shown earlier). As mentioned before, any valid JavaScript value
type can be used when working with useState(). Primitive value types such as strings or numbers
can be used just as you would reference value types such as objects or arrays (which, technically, are
objects of course).

The state-updating function (setUserData, in the preceding example) is still a function created by
React that you can call to set the state to a new value. Also, you wouldn’t have to set it to an object again,
though that is typically the default. You don’t change value types when updating state unless you have a
good reason for doing so (though, technically, you are allowed to switch to a different type at any time).

Note

In the preceding example, the way the state-updating function is used is not entirely correct.
It would work but it does violate recommended best practices. You will learn later in this
chapter why this is the case and how you should use the state-updating function instead.

Chapter 4 71

When managing state objects as shown in the preceding example, there’s one crucial thing you should
keep in mind: you must always set all properties the object contains, even the ones that didn’t change.
This is required because, when calling the state-updating function, you tell React which new state
value should be stored internally.

Thus, any value you pass as an argument to the state-updating function will overwrite the previously
stored value. If you provide an object that contains only the properties that changed, all other properties
will be lost since the previous state object is replaced by the new one, which contains fewer properties.

This is a common pitfall and therefore something you must pay attention to. For this reason, in the
example shown previously, the property that is not changed is set to the previous state value—for ex-
ample, email: userData.email, where userData is the current state snapshot and the first element
of the array returned by useState(), while setting password to event.target.value.

It is totally up to you whether you prefer to manage one state value (that is, an object grouping together
multiple values) or multiple state slices (that is, multiple useState() calls) instead. There is no right
or wrong way and both approaches have their advantages and disadvantages.

However, it is worth noting that you should typically try to break up big components into smaller ones.
Just as regular JavaScript functions shouldn’t do too much work in a single function (it is considered a
good practice to have separate functions for different tasks), components should focus on one or only
a few tasks per component as well. Instead of having a huge <App /> component that handles multiple
forms, user authentication, and a shopping cart directly in one component, it would be preferable to
split the code of that component into multiple smaller components that are then combined to build
the overall app.

When following that advice, most components shouldn’t have too much state to manage anyway, since
managing many state values is an indicator of a component doing too much work. That’s why you might
end up using a few state slices per component, instead of large state objects.

Updating State Based on Previous State Correctly
When learning about objects as state values, you learned that it’s easy to accidentally overwrite (and
lose) data because you might set the new state to an object that contains only the properties that
changed—not the ones that didn’t. That’s why, when working with objects or arrays as state values, it’s
important to always add the existing properties and elements to the new state value.

Also, in general, setting a state value to a new value that is (at least partially) based on the previous
state is a common task. You might set password to event.target.value but also set email to userData.
email to ensure that the stored email address is not lost due to updating a part of the overall state (that
is, because of updating the password to the newly entered value).

That’s not the only scenario where the new state value could be based on the previous one, though.
Another example would be a counter component—for example, a component like this:

function Counter() {
 const [counter, setCounter] = useState(0);

Working with Events and State72

 function handleIncrement() {
 setCounter(counter + 1);
 };

 return (
 <>
 <p>Counter Value: {counter}</p>
 <button onClick={handleIncrement}>Increment</button>
 </>
);
};

In this example, a click event handler is registered for <button> (via the onClick prop). Upon every
click, the counter state value is incremented by 1.

This component would work, but the code shown in the example snippet is actually violating an im-
portant best practice and recommendation: state updates that depend on some previous state should
be performed with the help of a function that’s passed to the state-updating function. To be precise,
the example should be rewritten like this:

function Counter() {
 const [counter, setCounter] = useState(0);

 function handleIncrement() {
 setCounter(function(prevCounter) { return prevCounter + 1; });
 // alternatively, JS arrow functions could be used:
 // setCounter(prevCounter => prevCounter + 1);
 };

 return (
 <>
 <p>Counter Value: {counter}</p>
 <button onClick={handleIncrement}>Increment</button>
 </>
);
};

This might look a bit strange. It might seem like a function is now passed as the new state value to
the state-updating function (that is, the number stored in counter is replaced with a function). But,
indeed, that is not the case.

Chapter 4 73

Technically, a function is passed as an argument to the state-updating function, but React won’t store
that function as the new state value. Instead, when receiving a function as a new state value in the
state-updating function, React will call that function for you and pass the latest state value to that
function. Therefore, you should provide a function that accepts at least one parameter: the previous
state value. This value will be passed into the function automatically by React when React executes
the function (which it will do internally).

The function should then also return a value—the new state value that should be stored by React. Also,
since the function receives the previous state value, you can now derive the new state value based
on the previous state value (for example, by adding the number 1 to it, but any operation could be
performed here).

Why is this required if the app worked fine before this change as well? It’s required because, in more
complex React applications and UIs, React could be processing many state updates simultaneously—
potentially triggered from different sources at different times.

When not using the approach discussed in the last paragraphs, the order of state updates might not
be the expected one and bugs could be introduced into the app. Even if you know that your use case
won’t be affected and the app does its job without issue, it is recommended to simply adhere to the
discussed best practice and pass a function to the state-updating function if the new state depends
on the previous state.

With this newly gained knowledge in mind, take another look at an earlier code example:

function LoginForm() {
 const [userData, setUserData] = useState({
 email: '',
 password: ''
 });

 function handleUpdateEmail(event) {
 setUserData({
 email: event.target.value,
 password: userData.password
 });
 };

 function handleUpdatePassword(event) {
 setUserData({
 email: userData.email,
 password: event.target.value
 });
 };

Working with Events and State74

 // ... code omitted, because the returned JSX code is the same as before
};

Can you spot the error in this code?

It’s not a technical error; the code will execute fine, and the app will work as expected. But there is a
problem with this code nonetheless. It violates the discussed best practice. In the code snippet, the
state in both handler functions is updated by referring to the current state snapshot via userData.
password and userData.email, respectively.

The code snippet should be rewritten like this:

function LoginForm() {
 const [userData, setUserData] = useState({
 email: '',
 password: ''
 });

 function handleUpdateEmail(event) {
 setUserData(prevData => ({
 email: event.target.value,
 password: prevData.password
 }));
 };

 function handleUpdatePassword(event) {
 setUserData(prevData => ({
 email: prevData.email,
 password: event.target.value
 }));
 };

 // ... code omitted, because the returned JSX code is the same as before
 // userData is not actively used here, hence you could get a warning
 // regarding that. Simply ignore it or start using userData
 // (e.g., via console.log(userData))
};

By passing an arrow function as an argument to setUserData, you allow React to call that function.
React will do this automatically (that is, if it receives a function in this place, React will call it) and it
will provide the previous state (prevState) automatically. The returned value (the object that stores
the updated email or password and the currently stored email or password) is then set as the new
state. The result, in this case, might be the same as before, but now the code adheres to recommended
best practices.

Chapter 4 75

In summary, you should always pass a function to the state-updating function if the new state depends
on the previous state. Otherwise, if the new state depends on some other value (for instance, user in-
put), directly passing the new state value as a function argument is absolutely fine and recommended.

Two-Way Binding
There is one special usage of React’s state concept that is worth discussing: two-way binding.

Two-way binding is a concept that is used if you have an input source (typically an <input> element)
that sets some state upon user input (for instance, upon the change event) and outputs the input at
the same time.

Here’s an example:

function NewsletterField() {
 const [email, setEmail] = useState('');

 function handleUpdateEmail(event) {
 setEmail(event.target.value);
 };

 return (
 <>
 <input
 type="email"
 placeholder="Your email address"
 value={email}
 onChange={handleUpdateEmail} />
 </>
);
};

Compared to the other code snippets and examples, the difference here is that the component does
not just store the user input (upon the change event, in this case) but that the entered value is also
output in the <input> element (via the default value prop) thereafter.

This might look like an infinite loop, but React deals with this and ensures that it doesn’t become one.
Instead, this is what’s commonly referred to as two-way binding as a value is both set and read from
the same source.

Note

In the previous example, an arrow function was used instead of a “regular” function. Both
approaches are fine, though. You can use either of the two function types; the result will
be the same.

Working with Events and State76

You may wonder why this is being discussed here, but it is important to know that it is perfectly valid
to write code like this. Also, this kind of code could be necessary if you don’t just want to set a value (in
this case, the email value) upon user input in the <input> field but also from other sources. For example,
you might have a button in the component that, when clicked, should clear the entered email address.

It might look like this:

function NewsletterField() {
 const [email, setEmail] = useState('');

 function handleUpdateEmail(event) {
 setEmail(event.target.value);
 };

 function handleClearInput() {
 setEmail(''); // reset email input (back to an empty string)
 };

 return (
 <>
 <input
 type="email"
 placeholder="Your email address"
 value={email}
 onChange={handleUpdateEmail} />
 <button onClick={handleClearInput}>Reset</button>
 </>
);
};

In this updated example, the handleClearInput function is executed when <button> is clicked. Inside
the function, the email state is set back to an empty string. Without two-way binding, the state would
be updated, but the change would not be reflected in the <input> element. There, the user would still
see their last input. The state reflected on the UI (the website) and the state managed internally by
React would be different—a bug you absolutely must avoid.

Deriving Values from State
As you can probably tell by now, state is a key concept in React. State allows you to manage data that,
when changed, forces React to re-evaluate a component and, ultimately, the UI.

As a developer, you can use state values anywhere in your component (and in your child components,
by passing state to them via props). You could, for example, repeat what a user entered like this:

function Repeater() {

Chapter 4 77

 const [userInput, setUserInput] = useState('');

 function handleChange(event) {
 setUserInput(event.target.value);
 };

 return (
 <>
 <input type="text" onChange={handleChange} />
 <p>You entered: {userInput}</p>
 </>
);
};

This component might not be too useful, but it will work, and it does use state.

Often, in order to do more useful things, you will need to use a state value as a basis to derive a new
(often more complex) value. For example, instead of simply repeating what the user entered, you could
count the number of entered characters and show that information to the user:

function CharCounter() {
 const [userInput, setUserInput] = useState('');

 function handleChange(event) {
 setUserInput(event.target.value);
 };

 const numChars = userInput.length;

 return (
 <>
 <input type="text" onChange={handleChange} />
 <p>Characters entered: {numChars}</p>
 </>
);
};

Note the addition of the new numChars constant (it could also be a variable, via let). This constant is
derived from the userInput state by accessing the length property on the string value that’s stored
in the userInput state.

This is important! You’re not limited to working with state values only. You can manage some key value
as state (that is, the value that will change) and derive other values based on that state value—such
as, in this case, the number of characters entered by the user. Indeed, this is something you will do
frequently as a React developer.

Working with Events and State78

You might also be wondering why numChars is a constant and outside of the handleChange function.
After all, that is the function that is executed upon user input (that is, upon every keystroke the user
makes).

Keep in mind what you learned about how React handles state internally. When you call the state-up-
dating function (setUserInput, in this case), React will re-evaluate the component to which the state
belongs. This means that the CharCounter component function will be called again by React. All the
code in that function is therefore executed again.

Figure 4.3: The numChars value is derived from state when the component function executes again

React does re-execute component functions to determine what the UI should look like after the state
update; and, if it detects any differences compared to the currently rendered UI, React will go ahead
and update the browser UI (that is, the DOM) accordingly. Otherwise, nothing will happen.

Since React calls the component function again, useState() will yield its array of values (current
state value and state-updating function). The current state value will be the state to which it was set
when setUserInput was called. Therefore, this new userInput value can be used to perform other
calculations anywhere in the component function—such as deriving numChars by accessing the length
property of userInput (as shown in Figure 4.3).

That’s why numChars can be a constant. For this component execution, it won’t be re-assigned. A new
value might only be derived when the component function is executed again in the future (that is if
setUserInput is called again). In that case, a brand-new numChars constant would be created (and
the old one would be discarded).

Chapter 4 79

Working with Forms and Form Submission
State is commonly used when working with forms and user input. Indeed, most examples in this
chapter dealt with some form of user input.

Up to this point, all examples focused on listening to user events that are directly attached to individual
input elements. That makes sense because you will often want to listen to events such as keystrokes or
an input losing focus. Especially when adding input validation (that is, checking entered values), you
might want to use input events to give website users useful feedback while they’re typing.

But it’s also quite common to react to the overall form submission. For example, the goal could be to
combine the input from various input fields and send the data to some backend server. How could
you achieve this? How can you listen and react to the submission of a form?

You can do all these things with the help of standard JavaScript events and the appropriate event
handler props provided by React. Specifically, the onSubmit prop can be added to <form> elements to
assign a function that should be executed once a form is submitted. To then handle the submission
with React and JavaScript, you must ensure that the browser won’t do its default thing and generate
(and send) an HTTP request automatically.

As in vanilla JavaScript, this can be achieved by calling the preventDefault() method on the auto-
matically generated event object.

Here’s a full example:

function NewsletterSignup() {
 const [email, setEmail] = useState('');
 const [agreed, setAgreed] = useState(false);

 function handleUpdateEmail(event) {
 // could add email validation here
 setEmail(event.target.value);
 };

 function handleUpdateAgreement(event) {
 setAgreed(event.target.checked); // checked is a default JS boolean
property
 };

 function handleSignup(event) {
 event.preventDefault(); // prevent browser default of sending a Http
request

 const userData = {userEmail: email, userAgrees: agreed};
 // doWhateverYouWant(userData);
 };

Working with Events and State80

 return (
 <form onSubmit={handleSignup}>
 <div>
 <label htmlFor="email">Your email</label>
 <input type="email" id="email" onChange={handleUpdateEmail}/>
 </div>
 <div>
 <input type="checkbox" id="agree" onChange={handleUpdateAgreement}/>
 <label htmlFor="agree">Agree to terms and conditions</label>
 </div>
 </form>
);
};

This code snippet handles form submission via the handleSignup() function that’s assigned to the
built-in onSubmit prop. User input is still fetched with the help of two state slices (email and agreed),
which are updated upon the inputs’ change events.

Using onSubmit (combined with preventDefault()) for handling form submissions is a very common
way of dealing with user input and forms in React. But when working on projects that use React 19
or higher, you can also use an alternative way for handling form submissions: you can use a React
feature called Form Actions, which will be covered in great detail in Chapter 9, Handling User Input &
Forms with Form Actions.

Note

In the preceding code example, you might’ve noticed a new prop that wasn’t used before
in this book: htmlFor. This is a special prop, built into React and the core JSX elements
it provides. It can be added to <label> elements in order to set the for attribute for
these elements. The reason it is called htmlFor instead of just for is that, as explained
earlier in the book, JSX looks like HTML but isn’t HTML. It’s JavaScript under the hood.
In JavaScript, for is a reserved keyword for for loops. To prevent problems, the prop is
therefore named htmlFor.

Chapter 4 81

Lifting State Up
Here’s a common scenario and problem: you have two components in your React app and a change or
event in component A should change the state in component B. To make this less abstract, consider
the following simple example:

function SearchBar() {
 const [searchTerm, setSearchTerm] = useState('');

 function handleUpdateSearchTerm(event) {
 setSearchTerm(event.target.value);
 };

 return <input type="search" onChange={handleUpdateSearchTerm} />;
};

function Overview() {
 return <p>Currently searching for {searchTerm}</p>;
};

function App() {
 return (
 <>
 <SearchBar />
 <Overview />
 </>
);
};

In this example, the Overview component should output the entered search term. However, the search
term is actually managed in another component—namely, the SearchBar component. In this simple
example, the two components could of course be merged into one single component, and the problem
would be solved. But it’s very likely that when building more realistic apps, you’ll face similar scenarios
but with way more complex components. Breaking components up into smaller pieces is considered
a good practice since it keeps the individual components manageable.

Having multiple components depend on some shared piece of state is therefore a scenario you will
face frequently when working with React.

Working with Events and State82

This problem can be solved by lifting state up. When lifting state up, the state is not managed in either
of the two components that use it—neither in Overview, which reads the state, nor in SearchBar,
which sets the state—but in a shared ancestor component instead. To be precise, it is managed in the
closest shared ancestor component. Keep in mind that components are nested into each other and
thus a “tree of components” (with the App component as the root component) is built up in the end.

Figure 4.4: An example component tree

In the previous simple code example, the App component is the closest (and, in this case, only) ancestor
component of both SearchBar and Overview. If the app was structured as shown in the figure, with
state set in one of the Product components and used in Cart, Products would be the closest ancestor
component.

State is lifted by using props in the components that need to manipulate (that is, set) or read state, and
by registering state in the ancestor component that is shared by the two other components. Here’s the
updated example from previously:

function SearchBar({onUpdateSearch}) {
 return <input type="search" onChange={onUpdateSearch} />;
};

function Overview({currentTerm}) {
 return <p>Currently searching for {currentTerm}</p>;
};

function App() {
 const [searchTerm, setSearchTerm] = useState('');

 function handleUpdateSearchTerm(event) {
 setSearchTerm(event.target.value);

Chapter 4 83

 };

 return (
 <>
 <SearchBar onUpdateSearch={handleUpdateSearchTerm} />
 <Overview currentTerm={searchTerm} />
 </>
);
};

The code didn’t actually change that much; it mostly moved around a bit. The state is now managed
inside of the shared ancestor and App component, and the two other components get access to it via
props.

Three key things are happening in this example:

1.	 The SearchBar component receives a prop called onUpdateSearch, whose value is a function—a
function created in the App component and passed down to SearchBar from App.

2.	 The onUpdateSearch prop is then set as a value to the onChange prop on the <input> element
inside of the SearchBar component.

3.	 The searchTerm state (that is, its current value) is passed from App to Overview via a prop
named currentTerm.

The first two points could be confusing. But keep in mind that, in JavaScript, functions are first-class
objects and regular values. You can store functions in variables and, when using React, pass functions
as values for props. Indeed, you could already see that in action at the very beginning of this chapter.
When introducing events and event handling, functions were provided as values to all these onXYZ
props (onChange, onBlur, and so on).

In this code snippet, a function is passed as a value for a custom prop (that is, a prop expected in a
component created by you, not built into React). The onUpdateSearch prop expects a function as a value
because the prop is then itself being used as a value for the onChange prop on the <input> element.

The prop is named onUpdateSearch to make it clear that it expects a function as a value and that it
will be connected to an event. Any name could’ve been chosen though; it doesn’t have to start with on.
But it’s a common convention to name props that expect functions as values and that are intended to
be connected to events like this.

Of course, updateSearch is not a default event, but since the function will effectively be called upon
the change event of the <input> element, the prop acts like a custom event.

With this structure, the state was lifted up to the App component. This component registers and manages
the state. However, it also exposes the state-updating function (indirectly, in this case, as it is wrapped
by the handleUpdateSearchTerm function) to the SearchBar component. It also provides the current
state value (searchTerm) to the Overview component via the currentTerm prop.

Working with Events and State84

Since the child and descendent components are also re-evaluated by React when state changes in a
component, changes in the App component will also lead to the SearchBar and Overview components
being re-evaluated. Therefore, the new prop value for searchTerm will be picked up, and the UI will
be updated by React.

No new React features are needed for this. It’s only a combination of state and props. However, de-
pending on how these features are connected and where they are used, both simple and more complex
app patterns can be achieved.

Summary and Key Takeaways
•	 Event handlers can be added to JSX elements via on[EventName] props (for example, onClick,

onChange).
•	 Any function can be executed upon (user) events.
•	 In order to force React to re-evaluate components and (possibly) update the rendered UI, state

must be used.
•	 State refers to data managed internally by React, and a state value can be defined via the

useState() Hook.
•	 React Hooks are JavaScript functions that add special features to React components (for ex-

ample, the state feature, in this chapter).
•	 useState() always returns an array with exactly two elements:

•	 The first element is the current state value.
•	 The second element is a function to set the state to a new value (the state-updating

function).

•	 When setting the state to a new value that depends on the previous value, a function should
be passed to the state-updating function. This function then receives the previous state as
a parameter (which will be provided automatically by React) and returns the new state that
should be set.

•	 Any valid JavaScript value can be set as state—besides primitive values such as strings or num-
bers. This also includes reference values such as objects and arrays.

•	 If state needs to change because of some event that occurs in another component, you should
lift the state up and manage it on a higher, shared level (that is, a common ancestor component).

What’s Next?
State is an extremely important building block because it enables you to build truly dynamic appli-
cations. With this key concept out of the way, the next chapter will dive into utilizing state (and other
concepts learned thus far) to render content conditionally and to render lists of content.

Chapter 4 85

These are common tasks that are required in almost any UI or web app you’re building, no matter
whether it’s about showing a warning overlay or displaying a list of products. The next chapter will
help you add such features to your React apps.

Test Your Knowledge!
Test your knowledge about the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/04-state-events/exercises/questions-
answers.md.

1.	 Which “problem” does state solve?
2.	 What’s the difference between props and state?
3.	 How is state registered in a component?
4.	 Which values does the useState() Hook provide?
5.	 How many state values can be registered for a single component?
6.	 Does state affect other components (than the component in which it was registered) as well?
7.	 How should state be updated if the new state depends on the previous state?
8.	 How can state be shared across multiple components?

Apply What You Learned
With the new knowledge gained in this chapter, you are finally able to build truly dynamic UIs and
React applications. Instead of being limited to hardcoded, static content and pages, you can now use
state to set and update values and force React to re-evaluate components and the UI.

Here, you will find an activity that allows you to apply all the knowledge, including this new state
knowledge, you have acquired up to this point.

Activity 4.1: Building a Simple Calculator
In this activity, you’ll build a very basic calculator that allows users to add, subtract, multiply, and
divide two numbers with each other.

The steps are as follows:

1.	 Build the UI by using React components. Be sure to build four separate components for the
four math operations, even though lots of code could be reused.

2.	 Collect the user input and update the result whenever the user enters a value into one of the
two related input fields.

Note that when working with numbers and getting those numbers from user input, you will
need to ensure that the entered values are treated as numbers and not as strings.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/04-state-events/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/04-state-events/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/04-state-events/exercises/questions-answers.md

Working with Events and State86

The final result and UI of the calculator should look like this:

Figure 4.5: Calculator UI

Activity 4.2: Enhancing the Calculator
In this activity, you’ll build upon Activity 4.1 to make the calculator built there slightly more complex.
The goal is to reduce the number of components and build one single component in which users can
select the mathematical operation via a drop-down element. In addition, the result should be output
in a different component—that is, not in the component where the user input is gathered.

The steps are as follows:

1.	 Remove three of the four components from the previous activity and use one single component
for all mathematical operations.

2.	 Add a drop-down element (<select> element) to that remaining component (between the two
inputs) and add the four math operations as options (<option> elements) to it.

3.	 Use state to gather both the numbers entered by the user and the math operation chosen via
the drop-down (it’s up to you whether you prefer one single state object or multiple state slices).

Note

Styling will, of course, differ. To get the same styling as shown in the screenshot, use my pre-
pared starting project, which you can find here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/04-state-events/activities/practice-1-
start.

Analyze the index.css file in that project to determine how to structure your JSX code
to apply the styles.

Note

You’ll find the full example solution here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/04-state-events/activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/04-state-events/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/04-state-events/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/04-state-events/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/04-state-events/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/04-state-events/activities/practice-1

Chapter 4 87

4.	 Output the result in another component. (Hint: choose a good place for registering and man-
aging the state.)

The result and UI of the calculator should look like this:

Figure 4.6: UI of the enhanced calculator

Note

You’ll find the full example solution here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/04-state-events/activities/practice-2.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/04-state-events/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/04-state-events/activities/practice-2

5
Rendering Lists and Conditional
Content

Introduction
By this point in the book, you are already familiar with several key concepts, including components,
props, state, and events, with which you have all the core tools you need to build all kinds of different
React apps and websites. You have also learned how to output dynamic values and results as part of
the user interface.

However, there are two topics related to outputting dynamic data that have not yet been discussed in
depth: outputting content conditionally and rendering list data. Since most (if not all) websites and
web apps you build will require at least one of these two concepts, it is crucial to know how to work
with conditional content and list data.

In this chapter, you will therefore learn how to render and display different user interface elements
(and even entire user interface sections), based on dynamic conditions. In addition, you will learn
how to output lists of data (such as a to-do list with its items) and render JSX elements dynamically
for the items that make up a list. This chapter will also explore important best practices related to
outputting lists and conditional content.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Output dynamic content conditionally
•	 Render lists of data and map list items to JSX elements
•	 Optimize lists such that React is able to efficiently update the user interface when

needed

Rendering Lists and Conditional Content90

What Are Conditional Content and List Data?
Before diving into the techniques for outputting conditional content or list data, it is important to
understand what exactly is meant by those terms.

Conditional content simply means any kind of content that should only be displayed under certain
circumstances. Some examples are as follows:

•	 Error overlays that should only show up if a user submits incorrect data in a form
•	 Additional form input fields that appear once the user chooses to enter extra details (such as

business details)
•	 A loading spinner that is displayed while data is sent or fetched to or from a backend server
•	 A side navigation menu that slides into view when the user clicks on a menu button

This is just a very short list of a few examples. You could, of course, come up with hundreds of addi-
tional examples. But it should be clear what all these examples are about in the end: visual elements
or entire sections of the user interface that are only shown if certain conditions are met.

In the first example (an error overlay), the condition would be that a user entered incorrect data into
a form. The conditionally shown content would then be the error overlay.

Conditional content is extremely common since virtually all websites and web apps have some content
that is similar or comparable to the preceding examples.

In addition to conditional content, many websites also output lists of data. It might not always be im-
mediately obvious, but if you think about it, there is virtually no website that does not display some
kind of list data. Again, here are some examples of list data that may be outputted on a site:

•	 An online shop displaying a grid or list of products
•	 An event booking site displaying a list of events
•	 A shopping cart displaying a list of cart items
•	 An orders page displaying a list of orders
•	 A blog displaying a list of blog posts—and maybe a list of comments below a blog post
•	 A list of navigation items in the header

An endless list (no pun intended) of examples could be created here. Lists are everywhere on the web.
As the preceding examples show, many (probably even most) websites have multiple lists with various
kinds of data on the same site.

Take an online shop, for example. Here, you would have a list (or a grid, which is really just another
kind of list) of products, a list of shopping cart items, a list of orders, a list of navigation items in the
header, and certainly a lot of other lists as well. This is why it is important that you know how to output
any kind of list with any kind of data in React-driven user interfaces.

Rendering Content Conditionally
Imagine the following scenario. You have a button that, when clicked, should result in the display of
an extra text box, as shown here:

Chapter 5 91

Figure 5.1: Initially, nothing but the button shows up on the screen

After a click on the button, another box is shown:

Figure 5.2: After clicking the button, the info box is revealed

This is a very simple example, but not an unrealistic one. Many websites have parts of the user inter-
face that work like this. Showing extra information upon a button click (or some similar interaction)
is a common pattern. Just think of nutrition information below a meal on a food order site or an FAQ
section where answers are shown after selecting a question.

So, how could this scenario be implemented in a React app?

If you ignore the requirement of rendering some of the content conditionally, the overall React com-
ponent could look like this:

function TermsOfUse() {
 return (
 <section>
 <button>Show Terms of Use Summary</button>
 <p>By continuing, you accept that we will not indemnify you for any
 damage or harm caused by our products.</p>
 </section>
);
}

This component has absolutely no conditional code in it and, therefore, both the button and the extra
information box are shown all the time.

In this example, how could the paragraph with the terms-of-use summary text be shown conditionally
(that is, only after the button is clicked)?

With the knowledge gained throughout the previous chapters, especially Chapter 4, Working with
Events and State, you already have the skills needed to only show the text after the button is clicked.
The following code shows how the component could be rewritten to show the full text only after the
button is clicked:

import { useState } from 'react';

Rendering Lists and Conditional Content92

function TermsOfUse() {
 const [showTerms, setShowTerms] = useState(false);

 function handleShowTermsSummary() {
 setShowTerms(true);
 }

 let paragraphText = '';

 if (showTerms) {
 paragraphText = 'By continuing, you accept that we will not indemnify you
for any damage or harm caused by our products.';
 }

 return (
 <section>
 <button onClick={handleShowTermsSummary}>
 Show Terms of Use Summary
 </button>
 <p>{paragraphText}</p>
 </section>
);
}

Parts of the code shown in this snippet already qualify as conditional content. The paragraphText value
is set conditionally, with the help of an if statement based on the value stored in the showTerms state.

However, the <p> element itself is actually not conditional. It is always there, regardless of whether it
contains a full sentence or an empty string. If you were to open the browser developer tools and inspect
that area of the page, an empty paragraph element would be visible, as shown in the following figure:

Figure 5.3: An empty paragraph element is rendered as part of the DOM

Chapter 5 93

Having that empty <p> element in the DOM is not ideal. While it’s invisible to the user, it’s an extra
element that needs to be rendered by the browser. The performance impact will very likely be negli-
gible but it’s still something you should avoid. A web page doesn’t benefit from having empty elements
that contain no content.

You can translate your knowledge about conditional values (such as the paragraph text) to conditional
elements, however. Besides storing standard values such as text or numbers in variables, you can also
store JSX elements in variables. This is possible because, as mentioned in Chapter 1, React – What and
Why, JSX is just syntactic sugar. Behind the scenes, a JSX element is a standard JavaScript function
that is executed by React. Also, of course, the return value of a function call can be stored in a variable
or constant.

With that in mind, the following code could be used to render the entire paragraph conditionally:

import { useState } from 'react';

function TermsOfUse() {
 const [showTerms, setShowTerms] = useState(false);

 function handleShowTermsSummary() {
 setShowTerms(true);
 }

 let paragraph;

 if (showTerms) {
 paragraph = <p>By continuing, you accept that we will not indemnify you for
any damage or harm caused by our products.</p>;
 }

 return (
 <section>
 <button onClick={handleShowTermsSummary}>
 Show Terms of Use Summary
 </button>
 {paragraph}
 </section>
);
}

In this example, if showTerms is true, the paragraph variable does not store text but instead an entire
JSX element (the <p> element). In the returned JSX code, the value stored in the paragraph variable is
outputted dynamically via {paragraph}. If showTerms is false, paragraph stores the value undefined
and nothing is rendered to the DOM. Therefore, inserting null or undefined in JSX code leads to
nothing being outputted by React. But if showTerms is true, the complete paragraph is saved as a
value and outputted in the DOM.

Rendering Lists and Conditional Content94

This is how entire JSX elements can be rendered dynamically. Of course, you are not limited to single
elements. You could store entire JSX tree structures (such as multiple, nested, or sibling JSX elements)
inside variables or constants. As a simple rule, anything that can be returned by a component function
can be stored in a variable.

Different Ways of Rendering Content Conditionally
In the example shown previously, content is rendered conditionally by using a variable, which is set
with the help of an if statement and then outputted dynamically in JSX code. This is a common (and
perfectly fine) technique of rendering content conditionally, but it is not the only approach you can use.

Alternatively, you could also do the following:

•	 Utilize ternary expressions.
•	 Abuse JavaScript logical operators.
•	 Use any other valid JavaScript way of selecting values conditionally.

The following sections will explore each approach in detail.

Utilizing Ternary Expressions
In JavaScript (and many other programming languages), you can use ternary expressions (also referred
to as conditional ternary operators) as alternatives to if statements. Ternary expressions can save
you lines of code, especially with simple conditions where the main goal is to assign some variable
value conditionally.

Here is a direct comparison—first starting with a regular if statement:

let a = 1;
if (someCondition) {
 a = 2;
}

Here is the same logic, implemented with a ternary expression:

const a = someCondition ? 2 : 1;

This is standard JavaScript code, not specific to React. However, it is important to understand this core
JavaScript feature in order to understand how it can be used in React apps.

Translated to the previous React example, the paragraph content could be set and outputted condi-
tionally with the help of ternary expressions like this:

import { useState } from 'react';

function TermsOfUse() {
 const [showTerms, setShowTerms] = useState(false);

 function handleShowTermsSummary() {

Chapter 5 95

 setShowTerms(true);
 }

 const paragraph = showTerms ? <p>By continuing, you accept that we will not
indemnify you for any damage or harm caused by our products.</p> : null;

 return (
 <section>
 <button onClick={handleShowTermsSummary}>
 Show Terms of Use Summary
 </button>
 {paragraph}
 </section>
);
}

As you can see, the overall code is a bit shorter than before, when an if statement was used. The
paragraph constant contains either the paragraph (including the text content) or null. null is used
as an alternative value because null can safely be inserted into JSX code as it simply leads to nothing
being rendered in its place.

A disadvantage of ternary expressions is that readability and understandability may suffer—especially
when using nested ternary expressions, like in the following example:

const paragraph = !showTerms ? null : someOtherCondition ? <p>By continuing,
you accept that we will not indemnify you for any damage or harm caused by our
products.</p> : null;

This code is difficult to read and even more difficult to understand. For this reason, you should typically
avoid writing nested ternary expressions and fall back to if statements in such situations.

However, despite these potential disadvantages, ternary expressions can help you write less code in
React apps, especially when using them inline, directly inside some JSX code:

import { useState } from 'react';

function TermsOfUse() {
 const [showTerms, setShowTerms] = useState(false);

 function handleShowTermsSummary() {
 setShowTerms(true);
 }

 return (
 <section>

Rendering Lists and Conditional Content96

 <button onClick={handleShowTermsSummary}>
 Show Terms of Use Summary
 </button>
 {showTerms ? <p>By continuing, you accept that we will not indemnify you
for any damage or harm caused by our products.</p> : null}
 </section>
);
}

This is the same example as before, only now it’s even shorter since here you avoid using the paragraph
constant by utilizing the ternary expression directly inside of the JSX snippet. This allows for relatively
lean component code, so it is quite common to use ternary expressions in JSX code in React apps to
take advantage of this.

Abusing JavaScript Logical Operators
Ternary expressions are popular because they enable you to write less code, which, when used in the
right places (and avoiding nesting multiple ternary expressions), can help with overall readability.

Especially in React apps, in JSX code you will often write ternary expressions like this:

<div>
 {showDetails ? <h1>Product Details</h1> : null}
</div>

Or, like this:

<div>
 {showTerms ? <p>Our terms of use …</p> : null}
</div>

What do these two snippets have in common?

They are unnecessarily long because, in both examples, the else case (: null) must be specified,
even though it adds nothing to the final user interface. After all, the primary purpose of these ternary
expressions is to render JSX elements (<h1> and <p>, in the preceding examples). The else case (:
null) simply means nothing is rendered if the conditions (showDetails and showTerms) are not met.

This is why a different pattern is popular among React developers:

<div>
 {showDetails && <h1>Product Details</h1>}
</div>

This is the shortest possible way of achieving the intended result, rendering only the <h1> element
and its content if showDetails is true.

Chapter 5 97

This code uses (or abuses) an interesting behavior of JavaScript’s logical operators, specifically of the
&& (logical and) operator. In JavaScript, the && operator returns the second value (that is, the value after
&&) if the first value (that is, the value before &&) is true or truthy (that is, not false, undefined, null,
0, and so on). Normally, you’d use the && operator in if statements or ternary expressions. However,
when working with React and JSX, you can take advantage of the behavior described previously to
output truthy values conditionally. This technique is also called short-circuiting.

For example, the following code would output 'Hello':

console.log(1 === 1 && 'Hello');

This behavior can be used to write very short expressions that check a condition and then output
another value, as shown in the preceding example.

Get Creative!
At this point, you have learned about three different ways of defining and outputting content condi-
tionally (regular if statements, ternary expressions, and using the && operator). However, the most
important point is that React code is ultimately just regular JavaScript code. Hence, any approach that
selects values conditionally will work.

If it makes sense in your specific use case and React app, you could also have a component that selects
and outputs content conditionally like this:

const languages = {
 de: 'de-DE',
 us: 'en-US',
 uk: 'en-GB'
};

function LanguageSelector({country}) {
 return <p>Selected Language: {languages[country]}</p>
}

Note

It is worth noting that using && can lead to unexpected results if you’re using it with
non-Boolean condition values (that is, if the value in front of && holds a non-Boolean
value). If showDetails were 0 instead of false (for whatever reason), the number 0
would be displayed on the screen. You should therefore ensure that the value acting as a
condition yields null or false instead of arbitrary falsy values. You could, for example,
force a conversion to a Boolean by adding !! (for example, !!showDetails). That is not
required if your condition value already holds null or false.

Rendering Lists and Conditional Content98

This component outputs either 'de-DE', 'en-US', or 'en-GB' based on the value of the country prop.
This result is achieved by using JavaScript’s dynamic property selection syntax. Instead of selecting
a specific property via the dot notation (such as person.name), you can select property values via the
bracket notation. With that notation, you can either pass a specific property name (languages['de-
DE']) or an expression that yields a property name (languages[country]).

Selecting property values dynamically like this is another common pattern for picking values from a
map of values. It is therefore an alternative to specifying multiple if statements or ternary expressions.

Also, in general, you can use any approach that works in standard JavaScript—because React is, after
all, just standard JavaScript at its core.

Which Approach is Best?
Various ways of setting and outputting content conditionally have been discussed, but which approach
is best?

That really is up to you (and, if applicable, your team). The most important advantages and disad-
vantages have been highlighted, but ultimately, it is your decision. If you prefer ternary expressions,
there’s nothing wrong with choosing them over the logical && operator, for example.

It will also depend on the exact problem you are trying to solve. If you have a map of values (such as
a list of countries and their country language codes), going for dynamic property selection instead
of multiple if statements might be preferable. On the other hand, if you have a single true/false
condition (such as age > 18), using a standard if statement or the logical && operator might be best.

Setting Element Tags Conditionally
Outputting content conditionally is a very common scenario. But sometimes, you will also want to
choose the type of HTML tag that will be outputted conditionally. Typically, this will be the case when
you build components whose main task is to wrap and enhance built-in components.

Here’s an example:

function Button({isButton, config, children}) {
 if (isButton) {
 return <button {...config}>{children}</button>;
 }
 return <a {...config}>{children};
};

This Button component checks whether the isButton prop value is truthy and, if that is the case,
returns a <button> element. The config prop is expected to be a JavaScript object, and the standard
JavaScript spread operator (...) is used to then add all key-value pairs of the config object as props to
the <button> element. If isButton is not truthy (maybe because no value was provided for isButton,
or because the value is false), the else condition becomes active. Instead of a <button> element, an
<a> element is returned.

Chapter 5 99

The Button component from the preceding example returns two totally different JSX elements, de-
pending on the isButton prop value. This is a great way of checking a condition and returning different
content (that is, conditional content).

However, by using a special React behavior, this component could be written with even less code:

function Button({isButton, config, children}) {
 const Tag = isButton ? 'button' : 'a';
 return <Tag {...config}>{children}</Tag>;
};

The special behavior is that tag names can be stored (as string values) in variables or constants, and
that those variables or constants can then be used like JSX elements in JSX code (as long as the variable
or constant name starts with an uppercase character, like all your custom components).

The Tag constant in the preceding example stores either the 'button' or 'a' string. Since it starts
with an uppercase character (Tag, instead of tag), it can then be used like a custom component inside
of JSX code snippets. React accepts this as a component, even though it isn’t a component function.
This is because a standard HTML element tag name is stored, so React can render the appropriate
built-in component. The same pattern could also be used with custom components. Instead of storing
string values, you would store pointers to your custom component functions through the following:

import MyComponent from './my-component.jsx';
import MyOtherComponent from './my-other-component.jsx';

const Tag = someCondition ? MyComponent : MyOtherComponent;

This is another useful pattern that can help save code and hence leads to leaner components.

Note

Using the spread operator (...) to translate an object’s properties (key-value pairs) into
component props is another common React pattern (and was introduced in Chapter 3,
Components and Props). The spread operator is not a React-specific operator but using it
for this special purpose is.

When spreading an object such as {link: 'https://some-url.com', isButton: false}
onto an <a> element (via <a {...obj}>), the result would be the same as if all props had
been set individually (that is,).

This pattern is particularly popular in situations where you build custom wrapper com-
ponents that wrap a common core component (e.g., <button>, <input>, or <a>) to add
certain styles or behaviors, while still allowing the component to be used in the same way
as the built-in component (that is, you can set all the default props).

Rendering Lists and Conditional Content100

Outputting List Data
Besides outputting conditional data, you will often work with list data that should be outputted on
a page. As mentioned earlier in this chapter, some examples are lists of products, transactions, and
navigation items.

Typically, in React apps, such list data is received as an array of values. For example, a component
might receive an array of products via props (passed into the component from inside another com-
ponent that might be getting that data from some backend API):

function ProductsList({products}) {
 // … todo!
};

In this example, the products array could look like this:

const products = [
 {id: 'p1', title: 'A Book', price: 59.99},
 {id: 'p2', title: 'A Carpet', price: 129.49},
 {id: 'p3', title: 'Another Book', price: 39.99},
];

This data can’t be outputted like this, though. Instead, the goal is typically to translate it into a list of
JSX elements that fits. For example, the desired result could be the following:

 <h2>A Book</h2>
 <p>$59.99</p>

 <h2>A Carpet</h2>
 <p>$129.49</p>

 <h2>Another Book</h2>
 <p>$39.99</p>

How can this transformation be achieved?

Again, it’s a good idea to ignore React and find a way to transform list data with standard JavaScript.
One possible way to achieve this would be to use a for…of loop, as shown:

const transformedProducts = [];
for (const product of products) {

Chapter 5 101

 transformedProducts.push(product.title);
}

In this example, the list of product objects (products) is transformed into a list of product titles (that
is, a list of string values). This is achieved by looping through all product items in products and ex-
tracting only the title property from each product. This title property value is then pushed into
the new transformedProducts array.

A similar approach can be used to transform the list of objects into a list of JSX elements:

const productElements = [];
for (const product of products) {
 productElements.push((

 <h2>{product.title}</h2>
 <p>${product.price}</p>

));
}

The first time you see code like this, it might look a bit strange. But keep in mind that JSX code can
be used anywhere where regular JavaScript values (that is, numbers, strings, objects, and so on) can
be used. Therefore, you can also push a JSX value onto an array of values. Since it’s JSX code, you can
also output content dynamically in those JSX elements (such as <h2>{product.title}</h2>).

This code is valid and is an important first step toward outputting list data. But it is only the first step,
since the current data was transformed but still isn’t returned by a component.

How can such an array of JSX elements be returned then?

The answer is that it can be returned without any special tricks or code. JSX actually accepts array
values as dynamically outputted values.

You can output the productElements array like this:

return (

 {productElements}

);

When inserting an array of JSX elements into JSX code, all JSX elements inside that array are outputted
next to each other. So, the following two snippets would produce the same output:

return (
 <div>
 {[<p>Hi there</p>, <p>Another item</p>]}
 </div>

Rendering Lists and Conditional Content102

);

return (
 <div>
 <p>Hi there</p>
 <p>Another item</p>
 </div>
);

With this in mind, the ProductsList component could be written like this:

function ProductsList({products}) {
 const productElements = [];
 for (const product of products) {
 productElements.push((

 <h2>{product.title}</h2>
 <p>${product.price}</p>

));
 }

 return (

 {productElements}

);
};

This is one possible approach for outputting list data. As explained earlier in this chapter, it’s all about
using standard JavaScript features and combining those features with JSX.

However, it’s not necessarily the most common way of outputting list data in React apps. In most
projects, you’ll encounter a different solution.

Mapping List Data
Outputting list data with for loops works, as you can see in the preceding examples. However, just as
with if statements and ternary expressions, you can replace for loops with an alternative syntax to
write less code and improve component readability.

Chapter 5 103

JavaScript offers a built-in array method that can be used to transform array items: the map() method.
map() is a default method that can be called on any JavaScript array. It accepts a function as a param-
eter and executes that function for every array item. The return value of this function should be the
transformed value. map() then combines all these returned, transformed values into a new array that
is then returned by map().

You could use map() like this:

const users = [
 {id: 'u1', name: 'Max', age: 35},
 {id: 'u2', name: 'Anna', age: 32}
];
const userNames = users.map(user => user.name);
// userNames = ['Max', 'Anna']

In this example, map() is used to transform the array of user objects into an array of usernames (that
is, an array of string values).

The map() method is often able to produce the same result as that of a for loop but with less code.

Therefore, map() can also be used to generate an array of JSX elements and the ProductsList com-
ponent from before could be rewritten like this:

function ProductsList({products}) {
 const productElements = products.map(product => (

 <h2>{product.title}</h2>
 <p>${product.price}</p>

)
);

 return (

 {productElements}

);
};

Rendering Lists and Conditional Content104

This is already shorter than the earlier for loop example. However, just as with ternary expressions,
the code can be shortened even more by moving the logic directly into the JSX code:

function ProductsList({products}) {
 return (

 {products.map(product => (

 <h2>{product.title}</h2>
 <p>${product.price}</p>

)
)}

);
};

Depending on the complexity of the transformation (that is, the complexity of the code executed inside
the inner function, which is passed to the map() method), for readability reasons, you might want
to consider not using this inline approach (such as when mapping array elements to some complex
JSX structure or when performing extra calculations as part of the mapping process). Ultimately, this
comes down to personal preference and judgment.

Because it’s very concise, using the map() method (either with the help of an extra variable or constant,
or directly inline in the JSX code) is the de facto standard approach for outputting list data in React
apps and JSX in general.

Updating Lists
Imagine you have a list of data mapped to JSX elements and a new list item is added at some point.
Or, consider a scenario in which you have a list wherein two list items swap places (that is, the list is
reordered). How can such updates be reflected in the DOM?

The good news is that React will take care of that for you if the update is performed in a stateful way
(that is, by using React’s state concept, as explained in Chapter 4, Working with Events and State).

However, there are a couple of important aspects to updating (stateful) lists you should be aware of.

Here’s a simple example that would not work as intended:

import { useState } from 'react';

function Todos() {
 const [todos, setTodos] = useState(['Learn React', 'Recommend this book']);

 function handleAddTodo() {

Chapter 5 105

 todos.push('A new todo');
 };

 return (
 <div>
 <button onClick={handleAddTodo}>Add Todo</button>

 {todos.map(todo => {todo})}

 </div>
);
};

Initially, two to-do items would be displayed on the screen (Learn React and Recommend
this book). But once the button is clicked and handleAddTodo is executed, the expected result
of another to-do item being displayed will not materialize.

This is because executing todos.push('A new todo') will update the todos array, but React won’t
notice it. Keep in mind that you must only update the state via the state updating function returned
by useState(); otherwise, React will not re-evaluate the component function.

So, how about this code:

function handleAddTodo() {
 setTodos(todos.push('A new todo'));
};

This is also incorrect because the state updating function (setTodos, in this case) should receive the
new state (that is, the state that should be set) as an argument. However, the push() method doesn’t
return the updated array. Instead, it mutates the existing array in place. Even if push() were to return
the updated array, it would still be wrong to use the preceding code, because the data would be changed
(mutated) behind the scenes before the state updating function would be executed. Since arrays are
objects, and therefore reference data types, technically, data would be changed before informing React
about that change. Following the React best practices, this should be avoided.

Therefore, when updating an array (or, as a side note, an object in general), you should perform this
update in an immutable way (i.e., without changing the original array or object). Instead, a new array
or object should be created. This new array can be based on the old array and contain all the old data,
as well as any new or updated data.

Therefore, the todos array should be updated like this:

function handleAddTodo() {
 setTodos(curTodos => [...curTodos, 'A new todo']);
 // alternative: Use concat() instead of the spread operator:
 // concat(), unlike push(), returns a new array

Rendering Lists and Conditional Content106

 // setTodos(curTodos => curTodos.concat('A new todo'));
};

By using concat() or a new array, combined with the spread operator, a brand-new array is provided
to the state updating function. Note also that a function is passed to the state updating function since
the new state depends on the previous state.

When updating an array (or any object) state value like this, React is able to pick up those changes.
Therefore, React will re-evaluate the component function and apply any required changes to the DOM.

A Problem with List Items
If you’re following along with your own code, and you output list data as described in the previous
sections, you might’ve noticed that React actually shows a warning in the browser developer tools
console, as shown in the following screenshot:

Figure 5.4: React sometimes generates a warning regarding missing unique keys

React is complaining about missing keys.

To understand this warning and the idea behind keys, it’s helpful to explore a specific use case and a
potential problem with that scenario. Assume that you have a React component that is responsible for
displaying a list of items—maybe a list of to-do items. In addition, assume that those list items can be
reordered and that the list can be edited in other ways (for example, new items can be added, existing
items can be updated or deleted, and so on). In other words, the list is not static.

Note

Immutability is not a React-specific concept, but it’s a key one in React apps nonetheless.
When working with state and reference values (that is, objects and arrays), immutability
is extremely important to ensure that React is able to pick up changes and no “invisible”
(that is, not recognized by React) state changes are performed.

There are different ways of updating objects and arrays immutably, but a popular approach
is to create new objects or arrays and then use the spread operator (...) to merge existing
data into those new arrays or objects.

Chapter 5 107

Consider this example user interface, in which a new item is added to a list of to-do items:

Figure 5.5: A list gets updated by inserting a new item at the top

In the preceding figure, you can see the initially rendered list (1), which is then updated after a user
enters and submits a new to-do value (2). A new to-do item is added to the top of the list (that is, as
the first item of the list) (3).

Rendering Lists and Conditional Content108

If you work on this app and open the browser developer tools (and then the JavaScript console), you
will see the “missing keys” warning that has been mentioned before. This app also helps with under-
standing where this warning is coming from.

In the Chrome DevTools, navigate to the Elements tab and select one of the to-do items or the empty
to-do list (that is, the element). Once you add a new to-do item, any DOM elements that were
inserted or updated are highlighted by Chrome in the Elements tab (by flashing briefly). Refer to the
following screenshot:

Figure 5.6: Updated DOM items are highlighted in the Chrome DevTools

The interesting part is that not only the newly added to-do element (that is, the newly inserted
element) is flashing. Instead, all existing elements, which reflect existing to-do items that were
not changed, are highlighted by Chrome. This implies that all these other elements were also
updated in the DOM—even though there was no need for that update. The items existed before, and
their content (the to-do text) didn’t change.

For some reason, React seems to destroy the existing DOM nodes (that is, the existing items), just
to then recreate them immediately. This happens for every new to-do item that is added to the list. As
you might imagine, this is not very efficient and can cause performance problems for more complex
apps that might be rendering dozens or hundreds of items across multiple lists.

This happens because React has no way of knowing that only one DOM node should be inserted. It
cannot tell that all other DOM nodes should stay untouched because React only received a brand-new
state value: a new array, filled with new JavaScript objects. Even if the content of those objects didn’t
change, they are technically still new objects (new values in memory).

Note

The example source code for this demo app can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-
code/examples/02-keys.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/examples/02-keys
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/examples/02-keys
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/examples/02-keys

Chapter 5 109

As the developer, you know how your app works and that the content of the to-do array didn’t actually
change that much. But React doesn’t know that. Therefore, React determines that all existing list items
(items) must be discarded and replaced by new items that reflect the new data that was provided
as part of the state update. That is why all list-related DOM nodes are updated (that is, destroyed and
recreated) for every state update.

Keys to the Rescue!
The problem outlined previously is an extremely common one. Most list updates are incremental
updates, not bulk changes. But React can’t tell whether that is the case for your use case and your list.

That’s why React uses the concept of keys when working with list data and rendering list items. Keys
are simply unique identifier values that can (and should) be attached to JSX elements when rendering
list data. Keys help React identify elements that were rendered before and didn’t change. By allowing
the unique identification of all list elements, keys also help React to move (list item) DOM elements
around efficiently.

Keys are added to JSX elements via the special built-in key prop that is accepted by every component:

<li key={todo.id}>{todo.text}

This special prop can be added to all components, be they built-in or custom. You don’t need to accept
or handle the key prop in any way on your custom components; React will do that for you automatically.

The key prop requires a value that is unique for every list item. No two list items should have the same
key. In addition, good keys are directly attached to the underlying data that makes up the list item.
Therefore, list item indexes are poor keys because the index isn’t attached to the list item data. If you
reorder items in a list, the indexes stay the same (an array always starts with index 0, followed by 1,
and so on) but the data is changed.

Consider the following example:

const hobbies = ['Sports', 'Cooking'];
const reversed = hobbies.reverse(); // ['Cooking', 'Sports']

In this example, 'Sports' has the index 0 in the hobbies array. In the reversed array, its index would
be 1 (because it’s the second item now). In this case, if the index were used as a key, the data would
not be attached to it.

Good keys are unique id values, such that every id belongs to exactly one value. If that value moves
or is removed, its id should move or disappear with that value.

Finding good id values typically isn’t a huge problem since most list data is fetched from databases
anyway. No matter whether you’re dealing with products, orders, users, or shopping cart items, it’s all
data that would typically be stored in a database. This kind of data already has unique id values since
you always have some kind of unique identification criteria when storing data in databases.

Sometimes, even the values themselves can be used as keys. Consider the following example:

const hobbies = ['Sports', 'Cooking'];

Rendering Lists and Conditional Content110

Hobbies are string values, and there is no unique id value attached to individual hobbies. Every hobby
is a primitive value (a string). However, in cases like this, you typically won’t have duplicate values
as it doesn’t make sense for a hobby to be listed more than once in an array like this. Therefore, the
values themselves qualify as good keys:

hobbies.map(hobby => <li key={hobby}>{hobby});

In cases where you can’t use the values themselves and there is no other possible key value, you can
generate unique id values directly in your React app code. As a last resort, you can also fall back to using
indexes; but be aware that this can lead to unexpected bugs and side effects if you reorder list items.

With keys added to list item elements, React is able to identify all items correctly. When the compo-
nent state changes, it can identify JSX elements that were rendered before already. Those elements
are therefore not destroyed or recreated anymore.

You can confirm this by again opening the browser DevTools to check which DOM elements are up-
dated upon changes to the underlying list data:

Figure 5.7: From multiple list items, only one DOM element gets updated

After adding keys, when updating the list state, only the new DOM item is highlighted in the Chrome
DevTools. The other items are (correctly) ignored by React.

Summary and Key Takeaways
•	 Like any other JavaScript value, JSX elements can be set and changed dynamically, based on

different conditions.
•	 Content can be set conditionally via if statements, ternary expressions, the logical “and” op-

erator (&&), or in any other way that works in JavaScript.
•	 There are multiple ways to handle conditional content—any approach that would work in

vanilla JavaScript can also be used in React apps.
•	 Arrays with JSX elements can be inserted into JSX code and will lead to the array elements

being outputted as sibling DOM elements.

Chapter 5 111

•	 List data can be converted into JSX element arrays via for loops, the map() method, or any
other JavaScript approach that leads to a similar conversion.

•	 Using the map() method is the most common way of converting list data to JSX element lists.
•	 Keys (via the key prop) should be added to the list JSX elements to help React update the DOM

efficiently.

What’s Next?
With conditional content and lists, you now have all the key tools needed to build both simple and
more complex user interfaces with React. You can hide and show elements or groups of elements
as needed, and you can dynamically render and update lists of elements to output lists of products,
orders, or users.

Of course, that’s not all that’s needed to build realistic user interfaces. Adding logic for changing
content dynamically is one thing, but most web apps also need CSS styling that should be applied to
various DOM elements. This book is not about CSS, but the next chapter will still explore how React
apps can be styled. Especially when it comes to setting and changing styles dynamically or scoping
styles to specific components, there are various React-specific concepts that should be familiar to
every React developer.

Test Your Knowledge!
Test your knowledge about the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/05-lists-conditional-code/exercises/
questions-answers.md:

1.	 What is “conditional content”?
2.	 Name at least two different ways of rendering JSX elements conditionally.
3.	 Which elegant approach can be used to define element tags conditionally?
4.	 What’s a potential downside of using only ternary expressions (for conditional content)?
5.	 How can lists of data be rendered as JSX elements?
6.	 Why should keys be added to rendered list items?
7.	 Give one example each for a good and a bad key.

Apply What You Learned
You are now able to use your React knowledge to change dynamic user interfaces in a variety of ways.
Besides being able to change displayed text values and numbers, you can now also hide or show entire
elements (or chunks of elements) and display lists of data.

In the following sections, you will find two activities that allow you to apply your newly gained knowl-
edge (combined with the knowledge gained in the other book chapters).

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/05-lists-conditional-code/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/05-lists-conditional-code/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/05-lists-conditional-code/exercises/questions-answers.md

Rendering Lists and Conditional Content112

Activity 5.1: Showing a Conditional Error Message
In this activity, you’ll build a basic form that allows users to enter their email address. Upon form
submission, the user input should be validated and invalid email addresses (for simplicity, here email
addresses that contain no @ sign are being referred to) should lead to an error message being shown
below the form. When invalid email addresses are made valid, potentially visible error messages
should be removed again.

Perform the following steps to complete this activity:

1.	 Build a user interface that contains a form with a label, an input field (of the text type—to make
entering incorrect email addresses easier for demo purposes), and a submit button that leads
to the form being submitted.

2.	 Collect the entered email address and show an error message below the form if the email
address contains no @ sign.

The final user interface should look and work as shown here:

Figure 5.8: The final user interface of this activity

Chapter 5 113

Activity 5.2: Outputting a List of Products
In this activity, you will build a user interface where a list of (dummy) products is displayed on the
screen. The interface should also contain a button that, when clicked, adds another new (dummy)
item to the existing list of products.

Perform the following steps to complete this activity:

1.	 Add a list of dummy product objects (every object should have an ID, title, and price) to a React
component and add code to output these product items as JSX elements.

2.	 Add a button to the user interface. When clicked, the button should add a new product object
to the product data list. This should then cause the user interface to update and display an
updated list of product elements.

Note

Styling will, of course, differ. To get the same styling as shown in the screenshot, use my pre-
pared starting project, which you can find here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/
practice-1-start.

Analyze the index.css file in that project to determine how to structure your JSX
code to apply the styles.

Note

You can find the full example solution here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/
practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-1

Rendering Lists and Conditional Content114

The final user interface should look and work as shown here:

Figure 5.9: The final user interface of this activity

Note

Styling will, of course, differ. To get the same styling as shown in the screenshot, use my pre-
pared starting project, which you can find here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/
practice-2-start.

Analyze the index.css file in that project to determine how to structure your JSX
code to apply the styles.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-2-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-2-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-2-start

Chapter 5 115

Note

You can find the full example solution here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/
practice-2.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/05-lists-conditional-code/activities/practice-2

6
Styling React Apps

Introduction
React.js is a frontend JavaScript library. This means that it’s all about building (web) user interfaces
and handling user interaction.

Up to this point, this book has extensively explored how React can be used to add interactivity to a
web app. State, event handling, and dynamic content are key concepts relating to this.

Of course, websites and web apps are not just about interactivity. You could build an amazing web app
that offers interactive and engaging features, and yet it may still be unpopular if it lacks appealing
visuals. Presentation is key, and the web is no exception.

Therefore, like all other apps and websites, React apps and websites need proper styling, and when
working with web technologies, Cascading Style Sheets (CSS) is the language of choice.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Style JSX elements via inline style assignments or with the help of CSS classes
•	 Set inline and class styles, both statically and dynamically or conditionally
•	 Build reusable components that allow for style customization
•	 Utilize CSS Modules to scope styles to components
•	 Understand the core idea behind styled-components, a third-party CSS-in-JS

library
•	 Use Tailwind CSS to style React apps

Styling React Apps118

However, this book is not about CSS. It won’t explain or teach you how to use CSS, as there are dedicated,
better resources for that (e.g., the free CSS guides at https://developer.mozilla.org/en-US/docs/
Learn/CSS). But this chapter will teach you how to combine CSS code with JSX and React concepts, such
as state and props. You will learn how to add styles to your JSX elements, style custom components,
and make those components’ styles configurable. This chapter will also teach you how to set styles
dynamically and conditionally and explore popular third-party libraries, like styled-components and
Tailwind CSS, that can be used for styling.

How Does Styling Work in React Apps?
Up to this point, the apps and examples presented in this book have only had minimal styling. But
they at least had some basic styling, rather than no styling at all.

But how was that styling added? How can styles be added to user interface elements (such as DOM
elements) when using React?

The short answer is, “Just as you would to non-React apps.” You can add CSS styles and classes to JSX
elements just as you would to regular HTML elements. And in your CSS code, you can use all the fea-
tures and selectors you know from CSS. There are no React-specific changes you have to make when
writing CSS code.

The code examples used so far (i.e., the activities or other examples hosted on GitHub) always used
regular CSS styling, with the help of CSS selectors, to apply some basic styles to the final user interface.
Those CSS rules were defined in an index.css file, which is part of every newly created React project
(when using Vite for project creation, as shown in Chapter 1, React – What and Why).

For example, here’s the index.css file used in Activity 5.2 of the previous chapter (Chapter 5, Rendering
Lists and Conditional Content):

@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;700&fam-
ily=Rubik:ital,wght@0,300..900;1,300..900&display=swap');

body {
 margin: 0;
 padding: 3rem;
 font-family: 'Poppins', sans-serif;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 text-align: center;
 background-color: #dff8fb;
 color: #212324;
}

button {
 padding: 0.5rem 1rem;

https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS

Chapter 6 119

 font-family: 'Rubik', sans-serif;
 font-size: 1rem;
 border: none;
 border-radius: 4px;
 background-color: #212324;
 color: #fff;
 cursor: pointer;
}

button:hover {
 background-color: #3f3e40;
}

ul {
 max-width: 35rem;
 list-style-type: none;
 padding: 0;
 margin: 2rem auto;
}

li {
 margin: 1rem 0;
 padding: 1rem;
 background-color: #5ef0fd;
 border: 2px solid #212324;
 border-radius: 4px;
}

The actual CSS code and its meaning are not important (as mentioned, this book is not about CSS).
However, what is important is the fact that this code contains no JavaScript or React code at all. As
mentioned, the CSS code you write is totally independent of the fact that you’re using React in your app.

The more interesting question is, how is that code actually applied to the rendered web page? How
is it imported into that page?

Normally, you would expect style file imports (via <link href="…">) inside of the HTML files that are
served. Since React apps are typically about building single-page applications (see Chapter 1, React

– What and Why), you only have one HTML file—the index.html file. But if you inspect that file, you
won’t find any <link href="…"> import that would point to the index.css file (only some other <link>
element that imports a favicon), as you can see in the following screenshot:

Styling React Apps120

Figure 6.1: The <head> section of the index.html file contains no <link> import that points to the
index.css file

How are the styles defined in index.css imported and applied then?

You find an import statement in the root entry file (this is the main.jsx file in projects generated via
Vite):

import React from 'react';
import ReactDOM from 'react-dom/client';

import App from './App.jsx';
import './index.css';

ReactDOM.createRoot(document.getElementById('root')).render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
);

The import './index.css'; statement leads to the CSS file being imported and the defined CSS code
being applied to the rendered web page.

It is worth noting that this is not standard JavaScript behavior. You can’t import CSS files into JavaS-
cript—at least, not if you’re just using vanilla JavaScript.

CSS works this way in React apps because the code is transpiled before it’s loaded into the browser.
Therefore, you won’t find that import statement in the final JavaScript code that’s executed in the
browser. Instead, during the transpilation process, the transpiler identifies the CSS import, removes
it from the JavaScript file, and injects the CSS code (or an appropriate link to the potentially bundled
and optimized CSS file) into the index.html file.

Chapter 6 121

You can confirm this by inspecting the rendered Document Object Model (DOM) content of the loaded
web page in the browser.

To do so, select the Elements tab in developer tools in Chrome, as shown below:

Figure 6.2: Injected CSS <style> elements can be found in the DOM at runtime

You can define any styles you want to apply to your HTML elements (that is, to your JSX elements in
your components) directly inside of the index.css file, or in any other CSS files that are imported by
the index.css file.

You could also add additional CSS import statements, pointing at other CSS files, to the main.jsx file
or any other JavaScript files (including files that store components). However, it is important to keep
in mind that CSS styles are always global. No matter whether you import a CSS file into main.jsx or a
component-specific JavaScript file, the styles defined in that CSS file will be applied globally.

That means that styles defined in a goal-list.css file, which may be imported in a GoalList.jsx file,
could still affect JSX elements defined in a totally different component. Later in this chapter, you will
learn about techniques that allow you to prevent accidental style clashes and implement style scoping.

Using Inline Styles
You can use CSS files to define global CSS styles and use different CSS selectors to target different JSX
elements (or groups of elements).

But even though it’s typically discouraged, you can also set inline styles directly on JSX elements via
the style prop.

Styling React Apps122

Setting inline styles in JSX code works like this:

function TodoItem() {
 return <li style={{color: 'red', fontSize: '18px'}}>Learn React!;
};

In this example, the style prop is added to the element (all JSX elements support the style prop),
and both the color and size properties of the text are set via CSS.

This approach differs from what you would use to set inline styles when working with just HTML
(instead of JSX). When using plain HTML, you would set inline styles like this:

<li style="color: red; font-size: 18px">Learn React!

The difference is that the style prop expects to receive a JavaScript object that contains the style set-
tings—not a plain string. This is something that must be kept in mind, since, as mentioned previously,
inline styles typically aren’t used that often.

Since the style object is an object and not a plain string, it is passed as a value between curly braces—
just as an array, a number, or any other non-string value would have to be set between curly braces
(anything between double or single quotes is treated as a string value). Therefore, it’s worth noting that
the preceding example does not use any kind of special “double curly-braces” syntax and, instead, uses
one pair of curly braces to surround the non-string value and another pair to surround the object data.

Inside the style object, any CSS style properties supported by the underlying DOM element can be
set. The property names are those defined for the HTML element (i.e., the same CSS property names
you could target and set with vanilla JavaScript, when mutating an HTML element).

When setting styles in JavaScript code (as with the style prop shown above), JavaScript CSS property
names have to be used. Those names are similar to the CSS property names you would use in CSS
code but not quite the same. Differences occur for property names that consist of multiple words (e.g.,
font-size). When targeting such properties in JavaScript, camelCase notation must be used (fontSize
instead of font-size), as JavaScript properties cannot contain dashes. Alternatively, you could wrap
the property name with quotes ('font-size').

Note

If you’re wondering why inline styles are discouraged, the following discussion on Stack
Overflow provides many arguments against inline styles: https://stackoverflow.com/
questions/2612483/whats-so-bad-about-in-line-css.

Note

You can find more information about the HTML element style property and JavaScript
CSS property names here: https://developer.mozilla.org/en-US/docs/Web/API/
HTMLElement/style.

https://stackoverflow.com/questions/2612483/whats-so-bad-about-in-line-css
https://stackoverflow.com/questions/2612483/whats-so-bad-about-in-line-css
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style

Chapter 6 123

Setting Styles via CSS Classes
As mentioned, using inline styles is typically discouraged, and therefore, CSS styles defined in CSS
files (or between <style> tags in the document <head> section) are preferred.

In those CSS code blocks, you can write regular CSS code and use CSS selectors to apply CSS styles to
certain elements. You could, for example, style all elements on a page (no matter which compo-
nent may have rendered them) like this:

li {
 color: red;
 font-size: 18px;
}

As long as this code gets added to the page (because the CSS file in which it is defined is imported into
main.jsx, for instance), the styling will be applied.

Quite frequently, developers aim to target specific elements or groups of elements. Instead of applying
some style to all elements on a page, the goal could be to only target the elements that are
part of a specific list. Consider this HTML structure that’s rendered to the page (it may be split across
multiple components, but this doesn’t matter here):

<nav>

 Home
 New Goals

</nav>
...
<h2>My Course Goals</h2>

 Learn React!
 Master React!

In this example, the navigation list items will most likely not receive the same styling as the course
goal list items (and vice versa).

Typically, this problem would be solved with the help of CSS classes and the class selector. You could
adjust the HTML code like this:

<nav>

 Home
 New Goals

Styling React Apps124

</nav>
...
<h2>My Course Goals</h2>

 <li class="goal-item">Learn React!
 <li class="goal-item">Master React!

The following CSS code would then only target the course goal list items but not the navigation list items:

.goal-item {
 color: red;
 font-size: 18px;
}

This approach almost works in React apps as well.

However, if you try to add CSS classes to JSX elements, as shown in the previous example, you will
face a warning in the browser’s developer tools:

Figure 6.3: A warning output by React

As illustrated in the preceding figure, you should not add class as a prop and, instead, use className.
Indeed, if you swap class for className as a prop name, the warning will disappear, and the class
CSS styles will be applied. Hence, the proper JSX code looks like this:

 <li className="goal-item">Learn React!
 <li className="goal-item">Master React!

But why is React suggesting you use className instead of class?

It’s similar to using htmlFor instead of for when working with <label> objects (as discussed in Chap-
ter 4, Working with Events and State). Just like for, class is a keyword in JavaScript, and therefore,
className is used as a prop name instead.

Setting Styles Dynamically
With inline styles and CSS classes (and global CSS styles in general), there are various ways of apply-
ing styles to elements. Thus far, all examples have shown static styles—that is, styles that will never
change once a page has been loaded.

Chapter 6 125

But while most page elements don’t change their styles after a page is loaded, you also typically have
some elements that should be styled dynamically or conditionally. Here are some examples:

•	 A to-do app where different to-do priorities receive different colors
•	 An input form where invalid form elements should be highlighted following an unsuccessful

form submission
•	 A web-based game where players can choose colors for their avatars

In such cases, applying static styles is not enough, and dynamic styles should be used instead. Setting
styles dynamically is straightforward. Again, it’s just about applying the key React concepts covered
earlier (most importantly, those regarding the setting of dynamic values from Chapter 2, Understanding
React Components and JSX, and Chapter 4, Working with Events and State).

Here’s an example where the color of a paragraph is set dynamically to the color that a user enters
into an input field:

function ColoredText() {
 const [enteredColor, setEnteredColor] = useState('');

 function handleUpdateTextColor(event) {
 setEnteredColor(event.target.value);
 };

 return (
 <>
 <input type="text" onChange={handleUpdateTextColor}/>
 <p style={{color: enteredColor}}>This text's color changes dynamically!</
p>
 </>
);
};

The text entered in the <input> field is stored in the enteredColor state. This state is then used to set
the color CSS property of the <p> element dynamically. This is achieved by passing a style object, with
the color property set to the enteredColor value as a value to the style prop of the <p> element. The
text color of the paragraph is, therefore, set dynamically to the value entered by the user (assuming
that users enter valid CSS color values into the <input> field).

You’re not limited to inline styles; CSS classes can also be set dynamically, as in the following snippet:

function TodoPriority() {
 const [chosenPriority, setChosenPriority] = useState('low-prio');

 function handleChoosePriority(event) {
 setChosenPriority(event.target.value);

Styling React Apps126

 };

 return (
 <>
 <p className={chosenPriority}>Chosen Priority: {chosenPriority}</p>
 <select onChange={handleChoosePriority}>
 <option value="low-prio">Low</option>
 <option value="high-prio">High</option>
 </select>
 </>
);
};

In this example, the chosenPriority state will alternate between low-prio and high-prio, depending
on the drop-down selection. The state value is then output as text inside the paragraph and is also
used as a dynamic CSS class name, applied to the <p> element. For this to have any visual effect, there
must, of course, be low-prio and high-prio CSS classes defined in some CSS file or <style> block.
For example, consider the following code in index.css:

.low-prio {
 background-color: blue;
 color: white;
}

.high-prio {
 background-color: red;
 color: white;
}

Conditional Styles
Closely related to dynamic styles are conditional styles. In fact, ultimately, they are really just a spe-
cial case of dynamic styles. In the previous examples, inline style values and class names were set as
equal to values chosen or entered by the user.

However, you can also derive styles or class names dynamically based on different conditions, as
shown here:

function TextInput({isValid, isRecommended, ...props}) {
 let cssClass = 'input-default';

 if (isRecommended) {
 cssClass = 'input-recommended';
 }

Chapter 6 127

 if (!isValid) {
 cssClass = 'input-invalid';
 }

 return <input className={cssClass} {...props} />
};

In this example, a wrapper component around the standard <input> element is built. (For more
information about wrapper components, see Chapter 3, Components and Props.) The main purpose of
this wrapper component is to set some default styles for the wrapped <input> element. The wrapper
component is built to provide a pre-styled input element that can be used anywhere in the app. In-
deed, providing pre-styled elements is one of the most common and popular use cases for building
wrapper components.

In this concrete example, the default styles are applied using CSS classes. If the isValid prop value is
true and the value of the isRecommended prop is false, the input-default CSS class will be applied
to the <input> element, since neither of the two if statements become active.

If isRecommended is true (but isValid is false), the input-recommended CSS class would be applied.
If isValid is false, the input-invalid class is added instead. Of course, the CSS classes must be
defined in some imported CSS files (for example, in index.css).

Inline styles could be set in a similar way, as shown in the following snippet:

function TextInput({isValid, isRecommended, ...props}) {
 let bgColor = 'black';

 if (isRecommended) {
 bgColor = 'blue';
 }

 if (!isValid) {
 bgColor = 'red';
 }

 return <input style={{backgroundColor: bgColor}} {...props} />
};

In this example, the background color of the <input> element is set conditionally, based on the values
received via the isValid and isRecommended props.

Combining Multiple Dynamic CSS Classes
In previous examples, a maximum of one CSS class was set dynamically at a time. However, it’s not
uncommon to encounter scenarios where multiple dynamically derived CSS classes should be merged
and added to an element.

Styling React Apps128

Consider the following example:

function ExplanationText({children, isImportant}) {
 const defaultClasses = 'text-default text-expl';

 return <p className={defaultClasses}>{children}</p>;
}

Here, two CSS classes are added to <p> by simply combining them into one string. Alternatively, you
could directly add a string with the two classes like this:

return <p className="text-default text-expl">{children}</p>;

This code will work, but what if the goal is to also add another class name to the list of classes, based
on the isImportant prop value (which is ignored in the preceding example)?

Replacing the default list of classes is easy, as you have learned:

function ExplanationText({children, isImportant}) {
 let cssClasses = 'text-default text-expl';

 if (isImportant) {
 cssClasses = 'text-important';
 }

 return <p className={cssClasses}>{children}</p>;
}

But what if the goal is not to replace the list of default classes? What if text-important should be
added as a class to <p>, in addition to text-default and text-expl?

The className prop expects to receive a string value, so passing an array of classes isn’t an option.
However, you can simply merge multiple classes into one string, and there are a couple of different
ways to do that:

•	 String concatenation:

cssClasses = cssClasses + ' text-important';

•	 Using a template literal:

cssClasses = `${cssClasses} text-important`;

•	 Joining an array:

cssClasses = [cssClasses, 'text-important'].join(' ');

Chapter 6 129

These examples could all be used inside the if statement (if (isImportant)) to conditionally add
the text-important class, based on the isImportant prop value. All three approaches, as well as
variations of these approaches, will work because all these approaches produce a string. In general,
any approach that yields a string can be used to generate values for className.

Merging Multiple Inline Style Objects
When working with inline styles, instead of CSS classes, you can also merge multiple style objects.
The main difference is that you don’t produce a string with all values but, rather, an object with all
combined style values.

This can be achieved by using standard JavaScript techniques to merge multiple objects into one object.
The most popular technique involves using the spread operator, as shown in this example:

function ExplanationText({children, isImportant}) {
 let defaultStyle = { color: 'black' };

 if (isImportant) {
 defaultStyle = { ...defaultStyle, backgroundColor: 'red' };
 }

 return <p style={defaultStyle}>{children}</p>;
}

Here, you will observe that defaultStyle is an object with a color property. If isImportant is true,
it’s replaced with an object that contains all the properties it had before (via the spread operator,
...defaultStyle) as well as the backgroundColor property.

Building Components with Customizable Styles
As you are aware by now, components can be reused. This is supported by the fact that they can be
configured via props. The same component can be used in different places on a page with different
configurations to yield a different output.

Since styles can be set both statically and dynamically, you can also make the styling of your compo-
nents customizable. The preceding examples already show such customization in action; for example,
the isImportant prop was used in the previous example to conditionally add a red background color
to a paragraph. The ExplanationText component therefore already allows indirect style customization
via the isImportant prop.

Note

For more information on the function and use of the spread operator, see Chapter 5, Ren-
dering Lists and Conditional Content.

Styling React Apps130

Besides this form of customization, you could also build components that accept props already holding
CSS class names or style objects. For example, the following wrapper component accepts a className
prop that is merged with a default CSS class (btn):

function Button({children, config, className}) {
 return <button {...config} className={`btn ${className}`}>{children}</but-
ton>;
};

This component could be used in another component in the following way:

<Button config={{onClick: doSomething}} className="btn-alert">Click me!</But-
ton>

If used like this, the final <button> element would receive both the btn as well as btn-alert classes.

You don’t have to use className as a prop name; any name can be used, since it’s your component.
However, it’s not a bad idea to use className because you can then keep your mental model of setting
CSS classes via className (for built-in components, you will not have that choice).

Instead of merging prop values with default CSS class names or style objects, you can overwrite de-
fault values. This allows you to build components that come with some styling out of the box without
enforcing that styling:

function Button({children, config, className}) {
 let cssClasses = 'btn';
 if (className) {
 cssClasses = className;
 }
 return <button {...config} className={cssClasses}>{children}</button>;
};

You can see how all the different concepts covered throughout this book are coming together here:
props allow customization, values can be set, swapped, and changed dynamically and conditionally,
and therefore, highly reusable and configurable components can be built.

Customization with Fixed Configuration Options
Besides exposing props such as className or style, which are merged with other classes or styles
defined inside a component function, you can also build components that apply different styles or
class names based on other prop values.

This has been shown in the previous examples where props such as isValid or isImportant were used
to apply certain styles conditionally. This way of applying styles could, therefore, be called “indirect
styling” (although this is not an official term).

Chapter 6 131

Both approaches can shine in different circumstances. For wrapper components, for example, accept-
ing className or style props (which can be merged with other styles inside the component) enables
the component to be used just like a built-in component (e.g., like the component it wraps). Indirect
styling, on the other hand, can be very useful if you want to build components that provide a couple
of pre-defined variations.

A good example is a text box that provides two built-in themes that can be selected via a specific prop.

Figure 6.4: A TextBox is styled based on the value of the “mode” prop

The code for the TextBox component could look like this:

function TextBox({children, mode}) {
 let cssClasses;

 if (mode === 'alert') {
 cssClasses = 'box-alert';
 } else if (mode === 'info') {
 cssClasses = 'box-info';
 }

 return <p className={cssClasses}>{children}</p>;
};

This TextBox component always yields a paragraph element. If the mode prop is set to any value oth-
er than 'alert' or 'info', the paragraph doesn’t receive any special styling. But if mode is equal to
'alert' or 'info', specific CSS classes are added to the paragraph.

This component, therefore, doesn’t allow direct styling via some className or style prop that would
be merged, but it does offer different variations or themes that can be set with the help of a specific
prop (the mode prop in this case).

The Problem with Unscoped Styles
If you consider the different examples you’ve so far dealt with in this chapter, there’s one specific use
case that occurs quite frequently: styles are relevant to a specific component only.

Styling React Apps132

For example, in the TextBox component in the previous section, 'box-alert' and 'box-info' are
CSS classes that are likely only relevant for this specific component and its markup. If any other JSX
element in the app had a 'box-alert' class applied to it (even though that might be unlikely), it prob-
ably shouldn’t be styled the same as the <p> element in the TextBox component.

Styles from different components could clash with each other and overwrite each other because styles
are not scoped (i.e., restricted) to a specific component. CSS styles are always global, unless inline
styles are used (which is discouraged, as mentioned earlier).

When working with component-based libraries such as React, this lack of scoping is a common issue.
It’s easy to write conflicting styles as app sizes and complexities grow (or, in other words, as more and
more components are added to the code base of a React app).

That’s why various solutions for this problem have been developed by members of the React commu-
nity. The following are three of the most popular solutions:

•	 CSS Modules (supported out of the box in React projects created with Vite)
•	 Styled components (using a third-party library called styled-components)
•	 Tailwind CSS (a popular CSS library)

Scoped Styles with CSS Modules
CSS Modules is the name for an approach where individual CSS files are linked to specific JavaScript
files and the components defined in those files. This link is established by transforming CSS class
names, such that every JavaScript file receives its own, unique CSS class names. This transformation
is performed automatically as part of the code build workflow. Therefore, a given project setup must
support CSS Modules by performing the described CSS class name transformation. Projects created
via Vite support CSS Modules by default.

Figure 6.5: CSS modules in action. CSS class names are transformed into unique names during the
build workflow

CSS Modules are enabled and used by naming CSS files in a very specific and clearly defined way:
<anything>.module.css. <anything> is any value of your choosing, but the .module part in front of
the file extension is required, as it signals (to the project build workflow) that this CSS file should be
transformed according to the CSS Modules approach.

Chapter 6 133

Therefore, CSS files named like this must be imported into components in a specific way:

import classes from './file.module.css';

This import syntax is different from the import syntax shown at the beginning of this section for
index.css:

import './index.css';

When importing CSS files as shown in the second snippet, the CSS code is simply merged into the
index.html file and applied globally. When using CSS Modules instead (first code snippet), the CSS
class names defined in the imported CSS file are transformed such that they are unique for the JS file
that imports the CSS file.

Since the CSS class names are transformed and are therefore no longer equal to the class names you
defined in the CSS file, you import an object (classes, in the preceding example) from the CSS file. This
object exposes all transformed CSS class names under keys that match the CSS class names defined
by you in the CSS file. The values of those properties are the transformed class names (as strings).

Here’s a complete example, starting with a component-specific CSS file (TextBox.module.css):

.alert {
 padding: 1rem;
 border-radius: 6px;
 background-color: #f9bcb5;
 color: #480c0c;
}

.info {
 padding: 1rem;
 border-radius: 6px;
 background-color: #d6aafa;
 color: #410474;
}

The JavaScript file (TextBox.jsx) for the component to which the CSS code should belong looks like this:

import classes from './TextBox.module.css';

function TextBox({ children, mode }) {
 let cssClasses;

 if (mode === 'alert') {
 cssClasses = classes.alert;
 } else if (mode === 'info') {
 cssClasses = classes.info;

Styling React Apps134

 }

 return <p className={cssClasses}>{children}</p>;
}

export default TextBox;

If you inspect the rendered text element in the browser developer tools, you will note that the CSS
class name applied to the <p> element does not match the class name specified in the TextBox.module.
css file:

Figure 6.6: CSS class name transforms because of CSS Modules usage

This is the case because, as described previously, the class name was transformed during the build
process to be unique. If any other CSS file, imported by another JavaScript file, were to define a class
with the same name (info in this case), the styles would not clash and not overwrite each other, as
the interfering class names would be transformed into different class names before being applied to
the DOM elements.

Indeed, in the example provided on GitHub, you can find another info CSS class defined in the index.
css file:

.info {
 border: 5px solid red;
}

That file is still imported into main.jsx, and hence its styles are applied globally to the entire document.
Nonetheless, the .info styles clearly aren’t affecting <p> rendered by TextBox (there is no red border
around the text box in Figure 6.6). They aren’t affecting that element because it doesn’t have an info
class anymore; the class was renamed _info_1mtzh_8 by the build workflow (although the name you
see will differ, as it contains a random element).

Note

The full example code can also be found at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/06-styling/examples/01-css-modules-intro.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/examples/01-css-modules-intro
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/examples/01-css-modules-intro

Chapter 6 135

It’s also worth noting that the index.css file is still imported into main.jsx, as shown at the beginning
of this chapter. The import statement is not changed to import classes from './index.css';, nor
is the CSS file called index.module.css.

Note, too, that you can use CSS Modules to scope styles to components and can also mix the usage
of CSS Modules with regular CSS files, which are imported into JavaScript files without using CSS
Modules (i.e., without scoping).

One other important aspect of using CSS Modules is that you can only use CSS class selectors (that
is, in your .module.css files) because CSS Modules rely on CSS classes. You can write selectors that
combine classes with other selectors, such as input.invalid, but you can’t add selectors that don’t use
classes at all in your .module.css files. For example, input { ... } or #some-id { ... } selectors
wouldn’t work here.

CSS Modules are a very popular way of scoping styles to (React) components, and they will be used
throughout many examples for the rest of this book.

The styled-components Library
The styled-components library is a so-called CSS-in-JS solution. CSS-in-JS solutions aim to remove the
separation between CSS code and JavaScript code by merging them into the same file. Component styles
would be defined right next to the component logic. It comes down to personal preference whether
you favor separation (as enforced by using CSS files) or keeping the two languages close to each other.

Since styled-components is a third-party library that’s not pre-installed in newly created React projects,
you have to install this library as a first step if you want to use it. This can be done via npm (which was
automatically installed together with Node.js in Chapter 1, React – What and Why):

npm install styled-components

The styled-components library essentially provides wrapper components around all built-in core
components (as in, around p, a, button, input, and so on). It exposes all these wrapper components as
tagged templates—JavaScript functions that aren’t called like regular functions but, instead, are execut-
ed by adding backticks (a template literal) right after the function name, for example, doSomething`text
data`.

Note

Tagged templates can be confusing when you see them for the first time, especially since
it’s a JavaScript feature that isn’t used too frequently. Chances are high that you haven’t
worked with them too often. It’s even more likely that you have never built a custom-tagged
template before. You can learn more about tagged templates in this excellent documen-
tation on MDN at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Template_literals#tagged_templates.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#tagged_templates
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#tagged_templates

Styling React Apps136

Here is a component that imports and uses styled-components to set and scope styling:

import styled from 'styled-components';

const Button = styled.button`
 background-color: #370566;
 color: white;
 border: none;
 padding: 1rem;
 border-radius: 4px;
`;

export default Button;

This component isn’t a component function but, rather, a constant that stores the value returned by
executing the styled.button tagged template. That tagged template returns a component function
that yields a <button> element. The styles passed via the tagged template (i.e., inside the template
literal) are applied to that returned button element. You can see this if you inspect the button in the
browser’s developer tools:

Figure 6.7: The rendered button element receives the defined component styles

In Figure 6.7, you can also see how the styled-components library applies your styles to the element. It
extracts your style definitions from the tagged template string and injects them into a <style> element
in the <head> section of the document. The injected styles are then applied via a class selector that is
generated (and named) by the styled-components library. Finally, the automatically generated CSS
class name is added to the element (<button>, in this case) by the library.

Chapter 6 137

The components exposed by the styled-components library spread any extra props you pass to a
component onto the wrapped core component. In addition, any content inserted between the opening
and closing tags is also inserted between the tags of the wrapped component.

That’s why the Button created previously can be used like this without adding any extra logic to it:

import Button from './components/button.jsx';

function App() {
 function handleClick() {
 console.log('This button was clicked!');
 }
 return <Button onClick={handleClick}>Click me!</Button>;
}

export default App;

You can do more with the styled-components library. For example, you can set styles dynamically
and conditionally. This book is not primarily about that library though. It’s just one of many alterna-
tives to CSS Modules. Therefore, it is recommended that you explore the official styled-components
documentation if you want to learn more, which you can find at https://styled-components.com/.

Use the Tailwind CSS Library for Styling
Scoping styles with the help of CSS modules or the styled-component library is a very useful and
popular technique.

But no matter which approach you use, you must write all the CSS code on your own. Hence you, of
course, need to know CSS.

But what if you don’t? Or if you simply don’t like writing CSS code?

In that case, you can use one of the many CSS libraries and frameworks available—for example, the
Bootstrap CSS framework or the Tailwind CSS library. Tailwind has become a very popular styling
solution for React projects (for developers who don’t want to write custom CSS code).

Keep in mind that Tailwind is a CSS library that’s actually not focused on React. Instead, you can use
Tailwind in any web project to style your HTML code—no matter which JavaScript library or frame-
work (if any) is being used there.

Note

The complete example code can be found on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/examples/02-
styled-components-intro.

https://styled-components.com/
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/examples/02-styled-components-intro
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/examples/02-styled-components-intro
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/examples/02-styled-components-intro

Styling React Apps138

But Tailwind is a common choice for React apps, since its core philosophy plays nicely with the compo-
nent-focused model of React. This is because when using Tailwind for styling, you typically compose
overall styles by applying many small CSS classes to individual JSX elements:

function App() {
 return (
 <main
 className="bg-gray-200 text-gray-900 h-screen p-12 text-center">
 <h1 className="font-bold text-4xl">Tailwind CSS is amazing!</h1>
 <p className="text-gray-600">
 It may take a while to get used to it. But it's great for people who
don't want to write custom CSS code.
 </p>
 </main>
);
}

export default App;

When first encountering code that uses Tailwind CSS, the long list of CSS classes may look intimidating
and chaotic. But when working with Tailwind, you typically quickly get used to it.

Also, because Tailwind’s approach offers many advantages:

•	 You don’t need to learn CSS in detail—understanding the Tailwind syntax, which is less complex
than writing CSS from scratch, suffices.

•	 You compose styles by combining CSS classes—similar to how you compose user interfaces
from components in React.

•	 You don’t have to switch between JSX and CSS files.
•	 Styling changes can be applied and tested very quickly.

As you can see in the above code snippet, the core idea of Tailwind essentially is that it provides many
combinable CSS classes that each do very little. For example, the bg-gray-200 class just sets the back-
ground color to a certain shade of gray, and nothing else.

Therefore, it’s the combination of all those CSS classes that achieves a certain look, and Tailwind CSS
offers many such classes that you may use and combine. You find a full list in the official documenta-
tion at https://tailwindcss.com/docs/utility-first.

When working with Tailwind in React projects, you can therefore build React components not just to
reuse logic or JSX markup but also styles:

function Item({ children }) {
 return <li className='p-1 my-2 bg-stone-100'>{children};
}

https://tailwindcss.com/docs/utility-first

Chapter 6 139

function App() {
 return (
 <main className="bg-gray-200 text-gray-900 h-screen p-12 text-center">
 <h1 className="font-bold text-4xl">Tailwind CSS is amazing!</h1>
 <p className="text-gray-600">
 It may take a while to get used to it. But it's great for people who
 don't want to write custom CSS code.
 </p>
 <section className="mt-10 border border-gray-600 max-w-3xl mx-auto p-4
rounded-md bg-gray-300">
 <h2 className="font-bold text-xl">Tailwind CSS Advantages</h2>
 <ul className="mt-4">
 <Item>No CSS knowledge required</Item>
 <Item>Compose styles by combining "small" CSS classes</Item>
 <Item>
 Never leave your JSX code - no need to fiddle around in extra CSS
files
 </Item>
 <Item>Quickly test and apply changes</Item>

 </section>
 </main>
);
}

export default App;

In this example, the Item component is built to reuse the Tailwind styles applied to the element.

If you plan on using Tailwind in your React project, you must install it as a first step. Detailed installa-
tion instructions for a broad variety of project setups can be found in the official documentation—this
includes instructions for Vite projects: https://tailwindcss.com/docs/guides/vite.

The installation process is not as simple as just importing a CSS file but nonetheless relatively straight-
forward. It does require a couple of setup steps, since Tailwind needs to plug into the project build
process to analyze your JSX files and produce CSS code that contains all used class names and style rules.

Note

You also find this example project on GitHub: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/06-styling/examples/03-tailwind.

https://tailwindcss.com/docs/guides/vite
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/examples/03-tailwind
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/examples/03-tailwind

Styling React Apps140

Besides offering many utility styles that can be combined, Tailwind also provides plenty of customiza-
tion opportunities and configuration options. Therefore, entire books could be written about Tailwind
alone. However, that’s, of course, not what this book is about. Therefore, if you’re interested in using
Tailwind in your React projects, Tailwind’s official documentation (see the links above) is a great place
to learn more.

Using Other CSS or JavaScript Styling Libraries and Frameworks
Obviously, it comes down to personal preferences whether you want to write custom CSS code (poten-
tially scoped with CSS Modules or styled-components) or whether you want to work with third-party
CSS libraries, like Tailwind CSS. There is no wrong or right choice, and you’ll see all kinds of approaches
being used in different React projects.

The options presented in this chapter are also not exhaustive—there are other kinds of CSS and Ja-
vaScript libraries, too:

•	 Utility libraries that solve very specific CSS problems—independent of the fact that you’re using
them in a React project (for example, Animate.css, which helps to add animations)

•	 Other CSS frameworks or libraries that provide a broad variety of pre-built CSS classes that can
be applied to elements to quickly achieve a certain look (for example, Bootstrap)

•	 JavaScript libraries that help with styling or specific styling aspects like animations (for ex-
ample, Framer Motion)

Some libraries and frameworks have React-specific extensions or specifically support React, but that
does not mean that you can’t use libraries that don’t have this.

Summary and Key Takeaways
•	 Standard CSS can be used to style React components and JSX elements.
•	 CSS files are typically directly imported into JavaScript files, which is possible thanks to the proj-

ect build process, which extracts the CSS code and injects it into the document (the HTML file).
•	 As an alternative to global CSS styles (with element, id, class, or other selectors), inline styles

can be used to apply styling to JSX elements.
•	 When using CSS classes for styling, you must use the className prop (not class).
•	 Styles can be set statically and dynamically or conditionally with the same syntax that is used

to inject other dynamic or conditional values into JSX code—a pair of curly braces.
•	 Highly configurable custom components can be built by setting styles (or CSS classes) based

on prop values, or by merging received prop values with other styles or class name strings.
•	 When using just CSS, clashing CSS class names can be a problem.
•	 CSS Modules solve this problem by transforming class names into unique names (per compo-

nent) as part of the build workflow.
•	 Alternatively, third-party libraries such as styled-components can be used. This library is a

CSS-in-JS library that also has the advantage or disadvantage (depending on your preference)
of removing the separation between JS and CSS code.

Chapter 6 141

•	 Tailwind CSS is another popular styling choice for React projects—it’s a library that allows you
to compose styles by combining many small CSS classes.

•	 Other CSS libraries or frameworks can be used as well; React does not impose any restrictions
regarding that.

What’s Next?
With styling covered, you’re now able to build not just functional but also visually appealing user in-
terfaces. Even if you often work with dedicated web designers or CSS experts, you still typically need
to be able to set and assign styles (dynamically) that are delivered to you.

With styling being a general concept that is relatively independent of React, the next chapter will dive
back into more React-specific features and topics. You will learn about portals and refs, which are two
key concepts that are built into React. You will discover which problems are solved by these concepts
and how the two features are used.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following questions.
You can then compare your answers to examples that can be found here: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/06-styling/exercises/questions-answers.
md.

1.	 With which language are styles for React components defined?
2.	 Which important difference, compared to projects without React, has to be kept in mind when

it comes to assigning classes to elements?
3.	 How can styles be assigned dynamically and conditionally?
4.	 What does “Scoping” mean in the context of styling?
5.	 How could styles be scoped to components? Briefly explain at least one concept that helps

with scoping.

Apply What You Learned
You are now not only able to build interactive user interfaces but also style those user interface el-
ements in engaging ways. You can set and change those styles dynamically or based on conditions.

In this section, you will find two activities that allow you to apply your newly gained knowledge in
combination with what you learned in previous chapters.

Activity 6.1: Providing Input Validity Feedback upon Form Sub-
mission
In this activity, you will build a basic form that allows users to enter an email address and a password.
The provided input of each input field is validated, and the validation result is stored (for each indi-
vidual input field).

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/06-styling/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/06-styling/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/06-styling/exercises/questions-answers.md

Styling React Apps142

The aim of this activity is to add some general form styling and some conditional styling that becomes
active once an invalid form has been submitted. The exact styles are up to you, but to highlight invalid
input fields, the background color of the affected input field must be changed, as well as its border
color and the text color of the related label.

The steps are as follows:

1.	 Create a new React project and add a form component to it.
2.	 Output the form component in the project’s root component.
3.	 In the form component, output a form that contains two input fields: one for entering an email

address and one for entering a password.
4.	 Add labels to the input fields.
5.	 Store the entered values and check their validity upon form submission (you can be creative

in forming your own validation logic).
6.	 Pick appropriate CSS classes from the provided index.css file (alternatively, you can write

your own classes as well).
7.	 Add them to the invalid input fields and their labels once invalid values have been submitted.

The final user interface should look like this:

Figure 6.8: The final user interface with invalid input values highlighted in red

Since this book is not about CSS and you may not be a CSS expert, you can use the index.css file from
the solution and focus on the React logic to apply appropriate CSS classes to JSX elements.

Note

All code files used for this activity, and a full solution, can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/activities/
practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/activities/practice-1

Chapter 6 143

Activity 6.2: Using CSS Modules for Style Scoping
In this activity, you’ll take the final app built in Activity 6.1 and adjust it to use CSS Modules. The goal
is to migrate all component-specific styles into a component-specific CSS file, which uses CSS Modules
for style scoping.

The final user interface therefore looks the same as it did in the previous activity. However, the styles
will be scoped to the Form component so that clashing class names won’t interfere with styling.

The steps are as follows:

1.	 Finish the previous activity or take the finished code from GitHub.
2.	 Identify the styles belonging specifically to the Form component and move them into a new,

component-specific CSS file.
3.	 Change CSS selectors to class name selectors and add classes to JSX elements as needed (this

is because CSS Modules require class name selectors).
4.	 Use the component-specific CSS file as explained throughout this chapter and assign the CSS

classes to the appropriate JSX elements.

Note

All code files used for this activity, and a full solution, can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/activities/
practice-2.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/06-styling/activities/practice-2

7
Portals and Refs

Introduction
React.js is all about building user interfaces, and, in the context of this book, it’s specifically about
building web user interfaces.

Web user interfaces are ultimately all about the Document Object Model (DOM). You can use JavaScript
to read or manipulate the DOM. This is what allows you to build interactive websites: you can add, re-
move, or edit DOM elements after a page has been loaded. This can be used to add or remove overlay
windows or to read values entered into input fields.

This was discussed in Chapter 1, React – What and Why, and, as you learned there, React is used to sim-
plify this process. Instead of manipulating the DOM or reading values from DOM elements manually,
you can use React to describe the desired state. React then takes care of the steps needed to achieve
this desired state.

However, there are scenarios and use cases wherein, despite using React, you still want to be able to
directly reach out to specific DOM elements—for example, to read a value entered by a user into an
input field, or if you’re not happy with the position of a newly inserted element in the DOM that was
chosen by React.

React provides certain functionalities that help you in exactly these kinds of situations: Portals and
Refs. Even though directly manipulating the DOM will still not be a great idea, these tools, as you will
learn throughout this chapter, can help with reading DOM element values or with changing the DOM
structure without working against React.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Use direct DOM element access to interact with elements
•	 Expose the functions and data of your components to other components
•	 Control the position of rendered JSX elements in the DOM

Portals and Refs146

A World without Refs
Consider the following example: you have a website that renders an input field, requesting a user’s
email address. It could look something like this:

Figure 7.1: An example form with an email input field

The code for the component that’s responsible for rendering the form and handling the entered email
address value might look like this:

function EmailForm() {
 const [enteredEmail, setEnteredEmail] = useState('');

 console.log(enteredEmail);

 function handleUpdateEmail(event) {
 setEnteredEmail(event.target.value);
 }

 function handleSubmitForm(event) {
 event.preventDefault();
 // could send enteredEmail to a backend server
 }

 return (
 <form className={classes.form} onSubmit={handleSubmitForm}>
 <label htmlFor="email">Your email</label>
 <input type="email" id="email" onChange={handleUpdateEmail} />
 <button>Save</button>
 </form>
);
}

As you can see, this example uses the useState() Hook, combined with the change event, to register
keystrokes in the email input field and store the entered value.

Chapter 7 147

This code works fine, and there is nothing wrong with having this kind of code in your application. But
adding the extra event listener and state, as well as adding the function to update the state whenever
the change event is triggered, is quite a bit of boilerplate code for one simple task: getting the entered
email address.

The preceding code snippet does nothing else with the email address other than submit it. In other
words, the only reason for using the enteredEmail state in the example is to read the entered value.

Even though the enteredEmail is only required in the handleSubmitForm() function, React will re-exe-
cute the EmailForm component function for every enteredEmail state updated, i.e., for every keystroke
in the <input> field. This is also not ideal since it leads to lots of unnecessary code execution and
hence potential performance issues.

In scenarios such as this, quite a bit of code (and maybe performance) could be saved if you fell back
to some vanilla JavaScript logic:

const emailInputEl = document.getElementById('email');
const enteredEmailVal = emailInputEl.value;

These two lines of code (which could be merged into one line theoretically) allow you to get hold of a
DOM element and read the currently stored value.

The problem with this kind of code is that it does not use React. And if you’re building a React app,
you should really stick to React when working with the DOM. Don’t start blending your own vanilla
JavaScript code that accesses the DOM into the React code.

This can lead to unintended behaviors or bugs, especially if you start manipulating the DOM. It could
lead to bugs because React would not be aware of your changes in that case; the actual rendered UI
would not be in sync with React’s assumed UI. Even if you’re just reading from the DOM, it’s a good
habit to not even start merging vanilla JavaScript DOM access methods with your React code.

To still allow you to get hold of DOM elements and read values, as shown above, React gives you a
special concept that you can use: Refs.

Ref stands for reference, and it’s a feature that allows you to store references to values—for example,
to DOM elements from inside a React component. The preceding vanilla JavaScript code would do the
same (it also gives you access to a rendered element), but when using Refs, you can get access without
mixing vanilla JavaScript code into your React code.

Refs can be created using a special React Hook called the useRef() Hook.

This Hook can be executed to generate a ref object:

import { useRef } from 'react';

function EmailForm() {
 const emailRef = useRef(null);

Portals and Refs148

 // other code ...
};

This generated Ref object, emailRef in the preceding example, is initially set to null but can then be
assigned to any JSX element. This assignment is done via a special prop (the ref prop) that is auto-
matically supported by every JSX element:

return (
 <form className={classes.form} onSubmit={handleSubmitForm}>
 <label htmlFor="email">Your email</label>
 <input
 ref={emailRef}
 type="email"
 id="email"
 />
 <button>Save</button>
 </form>
);

Just like the key prop introduced in Chapter 5, Rendering Lists and Conditional Content, the ref prop is
provided by React. The ref prop wants a Ref object, i.e., one that was created via useRef().

In this example, useRef() receives null as an initial value since it’s technically not yet assigned to
the DOM element when the component function executes for the first time. It’s only after that initial
component render cycle that the connection will be established. Therefore, after this first component
function execution, the value stored in the Ref will be the underlying DOM object of the <input>
element in this example.

With that Ref object created and assigned, you can then use it to get access to the connected JSX ele-
ment (to the <input> element in this example). There’s just one important thing to note: to get hold
of the connected element, you must access a special current prop on the created Ref object. This is
required because React stores the value assigned to the Ref object in a nested object, accessible via
the current property, as shown here:

function handleSubmitForm(event) {
 event.preventDefault();
 const enteredEmail = emailRef.current.value; // .current is mandatory!
 // could send enteredEmail to a backend server
};

emailRef.current yields the underlying DOM object that was rendered for the connected JSX element.
In this case, it therefore allows access to the input element DOM object. Since that DOM object has a
value property, this value property can be accessed without issue.

Chapter 7 149

With this kind of code, you can read the value from the DOM element without having to use useState()
and an event listener. The final component code therefore becomes quite a bit leaner:

function EmailForm() {
 const emailRef = useRef(null);

 function handleSubmitForm(event) {
 event.preventDefault();
 const enteredEmail = emailRef.current.value;
 // could send enteredEmail to a backend server
 }

 return (
 <form className={classes.form} onSubmit={handleSubmitForm}>
 <label htmlFor="email">Your email</label>
 <input
 ref={emailRef}
 type="email"
 id="email"
 />
 <button>Save</button>
 </form>
);
}

Refs versus State
Since Refs can be used to get quick and easy access to DOM elements, the question that might come
up is whether you should always use Refs instead of state.

The clear answer to this question is “no.”

Refs can be a very good alternative in use cases like the one shown above, when you need read access
to an element. This is very often the case when dealing with user input. In general, Refs can replace
state if you’re just accessing some value to read it when some function (a form submit handler function,
for example) is executed. As soon as you need to change values and those changes must be reflected
in the UI (for example, by rendering some conditional content), Refs are out of the game.

Note

For further information on this topic, see https://developer.mozilla.org/en-US/
docs/Web/HTML/Element/input#attributes.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attributes

Portals and Refs150

In the example above, if, besides getting the entered value, you’d also like to reset (i.e., clear) the
email input after the form was submitted, you should use state again. While you could reset the input
with the help of a Ref, you should not do that. You would start manipulating the DOM, and only React
should do that—with its own, internal methods, based on the declarative code you provide to React.

You should avoid resetting the email input like this:

function EmailForm() {
 const emailRef = useRef(null);

 function handleSubmitForm(event) {
 event.preventDefault();
 const enteredEmail = emailRef.current.value;
 // could send enteredEmail to a backend server

 emailRef.current.value = ''; // resetting the input value
 }

 return (
 <form className={classes.form} onSubmit={handleSubmitForm}>
 <label htmlFor="email">Your email</label>
 <input
 ref={emailRef}
 type="email"
 id="email"
 />
 <button>Save</button>
 </form>
);
}

Instead, you should reset it by using React’s state concept and by following the declarative approach
embraced by React:

function EmailForm() {
 const [enteredEmail, setEnteredEmail] = useState('');

 function handleUpdateEmail(event) {
 setEnteredEmail(event.target.value);
 }

 function handleSubmitForm(event) {
 event.preventDefault();

Chapter 7 151

 // could send enteredEmail to a backend server

 // reset by setting the state + using the value prop below
 setEnteredEmail('');
 }

 return (
 <form className={classes.form} onSubmit={handleSubmitForm}>
 <label htmlFor="email">Your email</label>
 <input
 type="email"
 id="email"
 onChange={handleUpdateEmail}
 value={enteredEmail}
 />
 <button>Save</button>
 </form>
);
}

Using Refs for More than DOM Access
Accessing DOM elements (for reading values) is one of the most common use cases for using Refs. As
shown above, it can help you reduce code in certain situations.

But Refs are more than just “element connection bridges;” they are objects that can be used to store all
kinds of values—not just pointers at DOM objects. You can, for example, also store strings or numbers
or any other kind of value in a Ref:

const passwordRetries = useRef(0);

You can pass an initial value to useRef() (0 in this example) and then access or change that value at
any point in time inside the component to which the Ref belongs:

passwordRetries.current = 1;

Note

As a rule, you should simply try to avoid writing imperative code in React projects. Instead,
tell React how the final UI should look and let React figure out how to get there.

Reading values via Refs is an acceptable exception, and manipulating DOM elements (with
or without Refs, e.g., by directly selecting DOM nodes via document.getElementById()
or similar) should be avoided. A rare exception is a scenario such as calling focus() on
an input element DOM object because methods like focus() don’t typically cause any
DOM changes that could break the React app.

Portals and Refs152

However, you still have to use the current property to read and change the stored value, because, as
mentioned above, this is where React will store the actual value that belongs to the Ref.

This can be useful for storing data that should “survive” component re-evaluations. As you learned in
Chapter 4, Working with Events and State, React will execute component functions every time the state
of a component changes. Since the function is executed again, any data stored in function-scoped
variables would be lost. Consider the following example:

function Counters() {
 const [counter1, setCounter1] = useState(0);
 const counterRef = useRef(0);
 let counter2 = 0;

 function handleChangeCounters() {
 setCounter1(1);
 counter2 = 1;
 counterRef.current = 1;
 };

 return (
 <>
 <button onClick={handleChangeCounters}>Change Counters</button>

 Counter 1: {counter1}
 Counter 2: {counter2}
 Counter 3: {counterRef.current}

 </>
);
};

In this example, counters 1 and 3 would change to 1 once the button is clicked. However, counter 2 would
remain zero, even though the counter2 variable gets changed to a value of 1 in handleChangeCounters
as well:

Figure 7.2: Only two of the three counter values changed

In this example, it should be expected that the state value changes and the new value is reflected in
the updated user interface. That is the whole idea behind state, after all.

Chapter 7 153

The Ref (counterRef) also keeps its updated value across component re-evaluations, though. That’s the
behavior described above: Refs are not reset or cleared when the surrounding component function
is executed again. The vanilla JavaScript variable (counter2) does not keep its value. Even though it
is changed in handleChangeCounters, a new variable is initialized when the component function is
executed again; thus the updated value (1) is lost.

In this example, it might again look like Refs can replace state, but the example actually shows very
well why that is not the case. Try replacing counter1 with another Ref (so that there is no state value
left in the component) and clicking the button:

import { useRef } from 'react';

function Counters() {
 const counterRef1 = useRef(0);
 const counterRef2 = useRef(0);
 let counter2 = 0;

 function handleChangeCounters() {
 counterRef1.current = 1;
 counter2 = 1;
 counterRef2.current = 1;
 }

 return (
 <>
 <button onClick={handleChangeCounters}>Change Counters</button>

 Counter 1: {counterRef1.current}
 Counter 2: {counter2}
 Counter 3: {counterRef2.current}

 </>
 }
);

export default Counters;

Nothing will change on the page because, while the button click is registered and the
handleChangeCounters function is executed, no state change is initiated, and state changes (initi-
ated via the setXYZ state updating function calls) are the triggers that cause React to re-evaluate a
component. Changes to Ref values do not do that.

Portals and Refs154

Figure 7.3: The counter values don’t change

As you can tell, changing Ref values does not trigger component functions to be executed again—state,
on the other hand, does. However, if a component function runs again (due to a state change), Ref
values are kept around and not dropped.

Therefore, if you have data that should survive component re-evaluations but should not be man-
aged as state (because changes to that data should not cause the component to be re-evaluated when
changed), you could use a Ref:

const passwordRetries = useRef(0);
// later in the component ...
passwordRetries.current = 1; // changed from 0 to 1
// later ...
console.log(passwordRetries.current); // prints 1, even if the component
changed

This is not a feature that’s used frequently, but it can be helpful from time to time. In all other cases,
use normal state values.

Refs in Custom Components
Refs cannot just be used to access DOM elements. You can also use them to access React components—
including your own components.

This can sometimes be useful. Consider this example: you have a <Form> component that contains a
nested <Preferences> component. The latter component is responsible for displaying two checkboxes,
asking the user for their newsletter preferences:

Figure 7.4: A newsletter sign-up form that shows two checkboxes to set newsletter preferences

Chapter 7 155

The code of the Preferences component could look like this:

function Preferences() {
 const [wantsNewProdInfo, setWantsNewProdInfo] = useState(false);
 const [wantsProdUpdateInfo, setWantsProdUpdateInfo] = useState(false);

 function handleChangeNewProdPref() {
 setWantsNewProdInfo((prevPref) => !prevPref);
 }

 function handleChangeUpdateProdPref() {
 setWantsProdUpdateInfo((prevPref) => !prevPref);
 }

 return (
 <div className={classes.preferences}>
 <label>
 <input
 type="checkbox"
 id="pref-new"
 checked={wantsNewProdInfo}
 onChange={handleChangeNewProdPref}
 />
 New Products
 </label>
 <label>
 <input
 type="checkbox"
 id="pref-updates"
 checked={wantsProdUpdateInfo}
 onChange={handleChangeUpdateProdPref}
 />
 Product Updates
 </label>
 </div>
);
};

As you can see, it’s a basic component that essentially outputs the two checkboxes, adds some styling,
and keeps track of the selected checkbox via state.

Portals and Refs156

The Form component code could look like this:

function Form() {
 function handleSubmit(event) {
 event.preventDefault();
 }

 return (
 <form className={classes.form} onSubmit={handleSubmit}>
 <div className={classes.formControl}>
 <label htmlFor="email">Your email</label>
 <input type="email" id="email" />
 </div>
 <Preferences />
 <button>Submit</button>
 </form>
);
}

Now imagine that upon form submission (inside of the handleSubmit function), the Preferences
should be reset (i.e., no checkbox is selected anymore). In addition, prior to resetting, the selected
values should be read and used in the handleSubmit function.

This would be straightforward if the checkboxes were not put into a separate component. If the entire
code and JSX markup reside in the Form component, state could be used in that component to read
and change the values. But this is not the case in this example, and rewriting the code just because of
this problem sounds like an unnecessary restriction.

Fortunately, Refs can help in this situation.

You can expose features (for example, functions or state values) of a component to other components
via Refs. Refs can essentially be used as a communication device between two components, just as they
were used as a communication device with a DOM element in the previous sections.

Conveniently, your custom components can receive a ref as a regular prop:

function Preferences(props) { // or function Preferences({ ref }) {}
 // can use props.ref in here
 // component code ...
};

export default Preferences;

Chapter 7 157

You could therefore use this Preferences component and pass a ref to it:

function Form() {
 const preferencesRef = useRef(null);

 return <Preferences ref={preferencesRef} />;
}

It’s important to note that this code only works when using React 19 or higher. When working with
an older React version, passing Refs as regular props to components is unfortunately not supported.
In such projects, you would have to wrap the component function that should receive a Ref with a
special forwardRef() function that’s provided by React.

Therefore, in React projects using React 18 or older, to receive and use Refs, you must wrap the re-
ceiving component (Preferences, in this example) with forwardRef().

This can be done like this:

const Preferences = forwardRef((props, ref) => {
 // component code ...
});

export default Preferences;

This looks slightly different than all the other components in this book because an arrow function is
used instead of the function keyword. You can always use arrow functions instead of “normal func-
tions”, but here it’s helpful to switch as it makes wrapping the function with forwardRef() very easy.
Alternatively, you could stick to the function keyword and wrap the function like this:

function Preferences(props, ref) {
 // component code ...
};

export default forwardRef(Preferences);

It is up to you which syntax you prefer. Both work and both are commonly used in React projects.

The interesting part about this code is that the component function now receives two parameters
instead of one. Besides receiving props, which component functions always do, it now also receives
a special ref parameter. And this parameter is only received because the component function is
wrapped with forwardRef().

This ref parameter will contain any ref value set by the component using the Preferences component.
For example, the Form component could set a ref parameter on Preferences like this:

function Form() {
 const preferencesRef = useRef({});

Portals and Refs158

 function handleSubmit(event) {
 // other code ...
 }

 return (
 <form className={classes.form} onSubmit={handleSubmit}>
 <div className={classes.formControl}>
 <label htmlFor="email">Your email</label>
 <input type="email" id="email" />
 </div>
 <Preferences ref={preferencesRef} />
 <button>Submit</button>
 </form>
);
}

Again, useRef() is used to create a ref object (preferencesRef), and that object is then passed via
the special ref prop to the Preferences component. The created Ref receives a default value of an
empty object ({}); it’s this object that can then be accessed via ref.current. In the Preferences com-
ponent, the ref value can either be received and extracted like a regular prop (React >= 19) or must
be accessed with the help of React’s forwardRef() function. In that case, it’s received via this second
ref parameter, which exists because of forwardRef().

But what’s the benefit of that? How can this preferencesRef object now be used inside Preferences
to enable cross-component interaction?

Since ref is an object that is never replaced, even if the component in which it was created via useRef()
is re-evaluated (see previous sections above), the receiving component can assign properties and
methods to that object and the creating component can then use these methods and properties. The
ref object is therefore used as a communication vehicle.

In this example, the Preferences component could be changed like this to use the ref object:

function Preferences(props) { // wrap with forwardRef() for React < 19
 const { ref } = props; // Extracting ref prop
 const [wantsNewProdInfo, setWantsNewProdInfo] = useState(false);
 const [wantsProdUpdateInfo, setWantsProdUpdateInfo] = useState(false);

 function handleChangeNewProdPref () {
 setWantsNewProdInfo((prevPref) => !prevPref);
 }

 function handleChangeUpdateProdPref() {

Chapter 7 159

 setWantsProdUpdateInfo((prevPref) => !prevPref);
 }

 function reset() {
 setWantsNewProdInfo(false);
 setWantsProdUpdateInfo(false);
 }

 ref.current.reset = reset;
 ref.current.selectedPreferences = {
 newProductInfo: wantsNewProdInfo,
 productUpdateInfo: wantsProdUpdateInfo,
 };

 // also return JSX code (has not changed) ...
});

In Preferences, both the state values and a pointer at a newly added reset function are stored in the
received ref object. ref.current is used since the object created by React (when using useRef())
always has such a current property, and that property should be used to store the actual values in ref.

Since Preferences and Form operate on the same object that’s stored in the ref object, the properties
and methods assigned to the object in Preferences can also be used in Form:

function Form() {
 const preferencesRef = useRef({});

 function handleSubmit(event) {
 event.preventDefault();

 console.log(preferencesRef.current.selectedPreferences); // reading a value
 preferencesRef.current.reset(); // executing a function stored in
Preferences
 }

 return (
 <form className={classes.form} onSubmit={handleSubmit}>
 <div className={classes.formControl}>
 <label htmlFor="email">Your email</label>
 <input type="email" id="email" />
 </div>
 <Preferences ref={preferencesRef} />
 <button>Submit</button>

Portals and Refs160

 </form>
);
}

By using Refs like this, a parent component (Form, in this case) is able to interact with some child
component (for instance, Preferences) in an imperative way—meaning properties can be accessed
and methods called to manipulate the child component (or, to be precise, to trigger some internal
functions and behavior inside the child component).

Controlled versus Uncontrolled Components
Passing Refs to custom components (via props or forwardRef()) is a method that can be used to allow
the Form and Preferences components to work together. But even though it might look like an elegant
solution at first, it should typically not be your default solution for this kind of problem.

Using Refs, as shown in the example above, leads to more imperative code in the end. It’s imperative
code because instead of defining the desired user interface state via JSX (which would be declarative),
individual step-by-step instructions are added in JavaScript.

If you revisit Chapter 1, React – What and Why (the The Problem with Vanilla JavaScript section), you’ll see
that code such as preferencesRef.current.reset() (from the example above) looks quite similar to
instructions such as buttonElement.addEventListener(…) (example from Chapter 1). Both examples
use imperative code and should be avoided for the reasons mentioned in Chapter 1 (writing step-by-
step instructions leads to inefficient micro-management and often unnecessarily complex code).

Inside the Form component, the reset() function of Preferences is invoked. Hence, the code describes
the desired action that should be performed (instead of the expected outcome). Typically, when work-
ing with React you should strive to describe the desired (UI) state instead. Remember, when working
with React, that you should write declarative, rather than imperative, code.

When using Refs to read or manipulate data as shown in the previous sections of this chapter, you are
building so-called uncontrolled components. The components are considered “uncontrolled” because
React is not directly controlling the UI state. Instead, values are read from other components or the
DOM. It’s therefore the DOM that controls the state (e.g., a state such as the value entered by a user
into an input field).

Note

React also provides an useImperativeHandle() Hook that may be used to expose data
or functions from custom components.

Technically, you don’t need to use this Hook, as the above examples prove. You can com-
municate between components via Refs without any extra Hooks.

But you might want to consider using useImperativeHandle() since it will handle sce-
narios like missing ref values (i.e., if no ref value is provided). You can learn more about
the usage of this (arguably niche) Hook in the official documentation: https://react.
dev/reference/react/useImperativeHandle.

https://react.dev/reference/react/useImperativeHandle
https://react.dev/reference/react/useImperativeHandle

Chapter 7 161

As a React developer, you should try to minimize the use of uncontrolled components. It’s absolutely
fine to use Refs to save some code if you only need to gather some entered values. But as soon as your
UI logic becomes more complex (for example, if you also want to clear user input), you should go for
controlled components instead.

Doing so is quite straightforward: a component becomes controlled as soon as React manages the
state. In the case of the EmailForm component from the beginning of this chapter, the controlled com-
ponent approach was shown before Refs were introduced. Using useState() to store the user’s input
(and update the state with every keystroke) meant that React was in full control of the entered value.

For the previous example, the Form and Preferences components, switching to a controlled compo-
nent approach could look like this:

function Preferences({newProdInfo, prodUpdateInfo, onUpdateInfo}) {
 return (
 <div className={classes.preferences}>
 <label>
 <input
 type="checkbox"
 id="pref-new"
 checked={newProdInfo}
 onChange={onUpdateInfo.bind(null, 'pref-new')}
 />
 New Products
 </label>
 <label>
 <input
 type="checkbox"
 id="pref-updates"
 checked={prodUpdateInfo}
 onChange={onUpdateInfo.bind(null, 'pref-updates')}
 />
 Product Updates
 </label>
 </div>
);
};

In this example, the Preferences component stops managing the checkbox state and instead receives
props from its parent component (the Form component).

bind() is used on the onUpdateInfo prop (which will receive a function as a value) to pre-configure the
function for future execution. bind() is a default JavaScript method that can be called on any JavaScript
function to control which arguments will be passed to that function once it’s invoked in the future.

Portals and Refs162

The Form component now manages the checkbox states, even though it doesn’t directly contain the
checkbox elements. But it now begins to control the Preferences component and its internal state,
hence turning Preferences into a controlled component instead of an uncontrolled one:

function Form() {
 const [wantsNewProdInfo, setWantsNewProdInfo] = useState(false);
 const [wantsProdUpdateInfo, setWantsProdUpdateInfo] = useState(false);

 function handleUpdateProdInfo(selection) {
 // using one shared update handler function is optional
 // you could also use two separate functions (passed to Preferences) as
props
 if (selection === 'pref-new') {
 setWantsNewProdInfo((prevPref) => !prevPref);
 } else if (selection === 'pref-updates') {
 setWantsProdUpdateInfo((prevPref) => !prevPref);
 }
 }

 function reset() {
 setWantsNewProdInfo(false);
 setWantsProdUpdateInfo(false);
 }

 function handleSubmit(event) {
 event.preventDefault();
 // state values can be used here
 reset();
 }

 return (
 <form className={classes.form} onSubmit={handleSubmit}>
 <div className={classes.formControl}>
 <label htmlFor="email">Your email</label>
 <input type="email" id="email" />
 </div>
 <Preferences

Note

You can learn more about this JavaScript feature at https://academind.com/tutorials/
function-bind-event-execution.

https://academind.com/tutorials/function-bind-event-execution
https://academind.com/tutorials/function-bind-event-execution

Chapter 7 163

 newProdInfo={wantsNewProdInfo}
 prodUpdateInfo={wantsProdUpdateInfo}
 onUpdateInfo={handleUpdateProdInfo}
 />
 <button>Submit</button>
 </form>
);
}

Form manages the checkbox selection state, including resetting the state via the reset() function,
and passes the managed state values (wantsNewProdInfo and wantsProdUpdateInfo) as well as the
handleUpdateProdInfo function, which updates the state values, to Preferences. The Form component
now controls the Preferences component.

If you go through the two code snippets above, you’ll notice that the final code is once again purely
declarative. Across all components, state is managed and used to declare the expected user interface.

It is considered a good practice to go for controlled components in most cases. If you are only extracting
some entered user input values, however, then using Refs and creating an uncontrolled component
is absolutely fine.

React and Where Things End up in the DOM
Leaving the topic of Refs, there is one other important React feature that can help with influencing
(indirect) DOM interaction: Portals.

When building user interfaces, you sometimes need to display elements and content conditionally.
This was already covered in Chapter 5, Rendering Lists and Conditional Content. When rendering condi-
tional content, React will inject that content into the place in the DOM where the overall component
(in which the conditional content is defined) is located.

For example, when showing a conditional error message below an input field, that error message is
right below the input in the DOM:

Figure 7.5: The error message DOM element sits right below the <input> it belongs to

Portals and Refs164

This behavior makes sense. Indeed, it would be pretty irritating if React were to start inserting DOM
elements in random places. But in some scenarios, you may prefer a (conditional) DOM element to
be inserted in a different place in the DOM—for example, when working with overlay elements such
as error dialogs.

In the preceding example, you could add logic to ensure that an error dialog is presented to the user
if the form is submitted with an invalid email address. This could be implemented with logic similar
to the "Invalid email address!" error message, and therefore the dialog element would, of course,
also be injected dynamically into the DOM:

Figure 7.6: The error dialog and its backdrop are injected into the DOM

In this screenshot, the error dialog is opened as an overlay above a backdrop element, which is itself
added so that it acts as an overlay to the rest of the user interface.

This example works and looks fine. However, there is room for improvement.

Semantically, it doesn’t entirely make sense to have the overlay elements injected somewhere nested
into the DOM next to the <input> element. It would make more sense for overlay elements to be
closer to the root of the DOM (in other words, to be direct child elements of <div id="root"> or even
<body>), instead of being children of <form>. And it’s not just a semantic problem. If the example app
contains other overlay elements, those elements might clash with each other, like this:

Note

The appearance is handled entirely by CSS, and you can take a look at the complete project
(including the styling) here: https://github.com/mschwarzmueller/book-react-key-
concepts-e2/tree/07-portals-refs/examples/05-portals-problem.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/examples/05-portals-problem
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/examples/05-portals-problem

Chapter 7 165

Figure 7.7: The <footer> element at the bottom is visible above the backdrop

In this example, the <footer> element at the bottom (“An example project”) is not hidden or grayed
out by the backdrop that belongs to the error dialog. The reason for that is that the footer also has
some CSS styling attached that turns it into a de facto overlay (because of position: fixed and left
+ bottom being used in its CSS styles).

As a solution to this problem, you could tweak some CSS styles and, for example, use the z-index CSS
property to control overlay levels. However, it would be a cleaner solution if the overlay elements
(i.e., the <div> backdrop and the <dialog> error elements) were inserted into the DOM in a different
place—for example, at the very end of the <body> element (but as direct children to <body>).

And that’s exactly the kind of problem React Portals help you solve.

Portals to the Rescue
A Portal, in React’s world, is a feature that allows you to instruct React to insert a DOM element in a
different place than where it would normally be inserted.

Considering the example shown above, this portal feature can be used to tell React to not insert the
<dialog> error and the <div> backdrop that belongs to the dialog inside the <form> element, but to
instead insert those elements at the end of the <body> element.

Portals and Refs166

To use this portal feature, you first must define a place wherein elements can be inserted (an “injection
hook”). This can be done in the HTML file that belongs to the React app (i.e., index.html). There, you
can add a new element (for example, a <div> element) somewhere in the <body> element:

<body>
 <div id="root"></div>
 <div id="dialogs"></div>
 <script type="module" src="/src/main.jsx"></script>
</body>

In this case, a <div id="dialogs"> element is added in the <body> section, after the <div id="root">
element to make sure that any components (and their styles) inserted in that element are evaluated
last. This will ensure that their styles take a higher priority and overlay elements inserted into <div
id="dialogs"> would not be overlaid by other content coming earlier in the DOM. Adding and using
multiple hooks would be possible, but for this example, only one injection point is needed. You can
also use HTML elements other than <div> elements.

With the index.html file adjusted, React can be instructed to render certain JSX elements (i.e., com-
ponents) in a specified injection point via the createPortal() function of react-dom:

import { createPortal } from 'react-dom';

import classes from './ErrorDialog.module.css';

function ErrorDialog({ onClose }) {
 return createPortal(
 <>
 <div className={classes.backdrop}></div>
 <dialog className={classes.dialog} open>
 <p>
 This form contains invalid values. Please fix those errors before
 submitting the form again!
 </p>
 <button onClick={onClose}>Okay</button>
 </dialog>
 </>,
 document.getElementById('dialogs')
);
}

export default ErrorDialog;

Chapter 7 167

Inside this ErrorDialog component, which is rendered conditionally by another component (the
EmailForm component, the example code for which is available on GitHub), the returned JSX code
is wrapped by createPortal(). createPortal() takes two arguments: the JSX code that should be
rendered in the DOM and a pointer at the element in index.html where the content should be injected.

In this example, the newly added <div id="dialogs"> is selected via document.
getElementById('dialogs'). Therefore, createPortal() ensures that the JSX code generated by
ErrorDialog is rendered in that place in the HTML document:

Figure 7.8: The overlay elements are inserted into <div id=”dialogs”>

In this screenshot, you can see that the overlay elements (<div> backdrop and <dialog> error) are
indeed inserted into the <div id="dialogs"> element, instead of the <form> element (as they were
before).

As a result of this change, <footer> no longer overlays the error dialog backdrop without any CSS
code changes. Semantically, the final DOM structure also makes more sense since you would typically
expect overlay elements to be closer to the root DOM node.

Still, using this portal feature is optional. The same visual result (though not the DOM structure) could
have been achieved by changing some CSS styles. Nonetheless, aiming for a clean DOM structure is a
worthwhile pursuit, and avoiding unnecessarily complex CSS code is also not a bad thing.

Summary and Key Takeaways
•	 Refs can be used to gain direct access to DOM elements or to store values that won’t be reset

or changed when the surrounding component is re-evaluated.
•	 Only use this direct access to read values, not to manipulate DOM elements (let React do this

instead).

Portals and Refs168

•	 Components that gain DOM access via Refs, instead of state and other React features, are
considered uncontrolled components (because React is not in direct control).

•	 Prefer controlled components (using state and a strictly declarative approach) over uncontrolled
components unless you’re performing very simple tasks such as reading an entered input value.

•	 Using Refs, you can also expose features of your own components so that they may be used
imperatively.

•	 You can set and use a ref prop on custom components when working with React 19 or higher.
•	 When using React < 19, React’s forwardRef() function must be used to receive Refs on custom

components.
•	 Portals can be used to instruct React to render JSX elements in a different place in the DOM

than they normally would.

What’s Next?
At this point in the book, you’ve encountered many key tools and concepts that can be used to build
interactive and engaging user interfaces. Thanks to Refs, you can read DOM values without using
state (hence avoiding unnecessary component re-evaluations) or manage values that persist across
component updates. Thanks to Portals, you’re able to control where exactly component markup is
inserted into the DOM.

As a result, you get some new tools that can be used to fine-tune your React app. You may be able to
improve performance (by avoiding component re-evaluations) or improve the structure and seman-
tics of your DOM elements. Ultimately, it’s the combination of all these tools that allows you to build
engaging, interactive, and also performant web applications with React.

But, as you will learn in the next chapter, React has even more helpful core concepts to offer: for
example, a way of handling side effects.

The next chapter will explore what exactly side effects are, why they need special handling, and how
React helps you with that.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following questions.
You can then compare your answers with examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/07-portals-refs/exercises/questions-
answers.md.

1.	 How can Refs help with handling user input in forms?
2.	 What is an uncontrolled component?
3.	 What is a controlled component?
4.	 When should you not use Refs?
5.	 What’s the main idea behind portals?

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/07-portals-refs/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/07-portals-refs/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/07-portals-refs/exercises/questions-answers.md

Chapter 7 169

Apply What You Have Learned
With this newly gained knowledge about Refs and Portals, it’s again time to practice what you have
learned.

Below, you’ll find two activities that allow you to practice working with Refs and Portals. As always, you
will, of course, also need some of the concepts covered in earlier chapters (e.g., working with state).

Activity 7.1: Extract User Input Values
In this activity, you have to add logic to an existing React component to extract values from a form.
The form contains an input field and a drop-down menu and you should make sure that, upon form
submission, both values are read and, for the purpose of this dummy app, output to the browser console.

Use your knowledge about Refs and uncontrolled components to implement a solution without using
React state.

After downloading the code and running npm install in the project folder (to install all the required
dependencies), the solution steps are as follows:

1.	 Create two Refs, one for each input element that should be read (input field and drop-down
menu).

2.	 Connect the Refs to the input elements.
3.	 In the submit handler function, access the connected DOM elements via the Refs and read the

currently entered or selected values.
4.	 Output the values to the browser console.

Book Code for Supplementary Content
Your book code for the supplementary content package included with this book is L58S0LOR5U.
To unlock the content, which includes per-chapter cheatsheets and videos from the author, follow
the instructions here: https://packt.link/supplementary-content-9781836202271.

Note

You can find the starting code for this activity at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-1-
start. When downloading this code, you’ll always download the entire repository. Make
sure to then navigate to the subfolder with the starting code (activities/practice-1-
start in this case) to use the right code snapshot.

https://packt.link/supplementary-content-9781836202271
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-1-start

Portals and Refs170

The expected result (user interface) should look like this:

Figure 7.9: The browser developer tools console outputs the selected values

Activity 7.2: Add a Side Drawer
In this activity, you will connect an already existing SideDrawer component with a button in the main
navigation bar to open the side drawer (i.e., display it) whenever the button is clicked. After the side
drawer opens, a click on the backdrop should close the drawer again.

In addition to implementing the general logic described above, your goal will be to ensure proper posi-
tioning in the final DOM so that no other elements are overlaid on top of the SideDrawer (without editing
any CSS code). The SideDrawer should also not be nested in any other components or JSX elements.

After downloading the code and running npm install to install all the required dependencies, the
solution steps are as follows:

1.	 Add logic to conditionally show or hide the SideDrawer component in the MainNavigation
component.

2.	 Add an injection hook for the side drawer in the HTML document.
3.	 Use React’s portal feature to render the JSX elements of SideDrawer in the newly added hook.

Note

You will find all code files used for this activity, as well as the solution,
at https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-
portals-refs/activities/practice-1.

Note

This activity comes with some starting code, which can be found here: https://github.
com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/
activities/practice-2-start.

￼Note
You will find all code files used for this activity, as well as the solution, at https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-1.
￼Note
You will find all code files used for this activity, as well as the solution, at https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-1.
￼Note
You will find all code files used for this activity, as well as the solution, at https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-1.
￼Note
You will find all code files used for this activity, as well as the solution, at https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-1.
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-2-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-2-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-2-start

Chapter 7 171

The final user interface should look and behave like this:

Figure 7.10: A click on the menu button opens the side drawer

Upon clicking on the menu button, the side drawer opens. If the backdrop behind the side drawer is
clicked, it should close again.

Portals and Refs172

The final DOM structure (with the side drawer opened) should look like this:

Figure 7.11: The drawer-related elements are inserted in a separate place in the DOM

The side drawer-related DOM elements (the <div> backdrop and <aside>) are inserted into a separate
DOM node (<div id="drawer">).

Note

You will find all code files used for this activity, as well as the solution, at https://github.
com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/
activities/practice-2.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/07-portals-refs/activities/practice-2

8
Handling Side Effects

Introduction
While all React examples previously covered in this book have been relatively straightforward, and
many key React concepts were introduced, it is unlikely that many real apps could be built with those
concepts alone.

Most real apps that you will build as a React developer also need to send HTTP requests, access the
browser storage and log analytics data, or perform any other kind of similar task, and with components,
props, events, and state alone, you’ll often encounter problems when trying to add such features to
your app. Detailed explanations and examples will be discussed later in this chapter, but the core
problem is that tasks like this will often interfere with React’s component rendering cycle, leading to
unexpected bugs or even breaking the app.

This chapter will take a closer look at those kinds of actions, analyze what they have in common, and
most importantly, teach you how to correctly handle such tasks in React apps.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Identify side effects in your React apps
•	 Understand and use the useEffect() Hook
•	 Utilize the different features and concepts related to the useEffect() Hook to

avoid bugs and optimize your code
•	 Handle side effects related and unrelated to state changes

Handling Side Effects174

What’s the Problem?
Before exploring a solution, it’s important to first understand the concrete problem.

Actions that are not directly related to producing a (new) user interface state often clash with React’s
component rendering cycle. They may introduce bugs or even break the entire web app.

Consider the following example code snippet (important: don’t execute this code as it will cause an
infinite loop and send a large number of HTTP requests behind the scenes):

import { useState } from 'react';

import classes from './BlogPosts.module.css';

async function fetchPosts() {
 const response = await fetch('https://jsonplaceholder.typicode.com/posts');
 const blogPosts = await response.json();
 return blogPosts;
}

function BlogPosts() {
 const [loadedPosts, setLoadedPosts] = useState([]);

 fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

 return (
 <ul className={classes.posts}>
 {loadedPosts.map((post) => (
 <li key={post.id}>{post.title}
))}

);
}

export default BlogPosts;

So what’s the problem with this code? Why does it create an infinite loop?

In this example, a React component (BlogPosts) is created. In addition, a non-component function
(fetchPosts()) is defined. That function uses the built-in fetch() function (provided by the browser)
to send an HTTP request to an external application programming interface (API) and fetch some data.

Chapter 8 175

In the preceding code snippet, the BlogPosts component utilizes useState() to register a loadedPosts
state value. The state is used to output a list of blog posts. Those blog posts are not defined in the app
itself though. Instead, they are fetched from the external API mentioned in the note box.

fetchPosts(), which is the utility function that contains the code for fetching blog posts data from
that backend API using the built-in fetch() function, is called directly in the component function body.
Since fetchPosts() is an async function (using async/await), it returns a promise. In BlogPosts, the
code that should be executed once the promise resolves is registered via the built-in then() method.

Once the fetchPosts() promise resolves, the extracted posts data (fetchedPosts) is set as the new
loadedPosts state (via setLoadedPosts(fetchedPosts)).

Note

The fetch() function is made available by the browser (all modern browsers support this
function). You can learn more about fetch() at https://academind.com/tutorials/
xhr-fetch-axios-the-fetch-api.

The fetch() function yields a promise, which, in this example, is handled via async/
await. Just like fetch(), promises are a key web development concept, which you can
learn more about (along with async/await) at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/async_function.

An API, in this context, is a site that exposes various paths to which requests can be
sent—either to submit or to fetch data. jsonplaceholder.typicode.com is a dummy
API, responding with dummy data. It can be used in scenarios like the preceding example,
where you just need an API to send requests to. You can use it to test some concept or
code without connecting or creating a real backend API. In this case, it’s used to explore
some React problems and concepts. Basic knowledge about sending HTTP requests with
fetch() and APIs is expected for this chapter and the book overall. If needed, you can use
pages such as MDN (https://developer.mozilla.org/) to strengthen your knowledge
of such core concepts.

Note

async/await is not used directly in the component function body because regular React
components must not be async functions. Such functions automatically return a promise
as a value (even without an explicit return statement), which is an invalid return value
for a React component.

That being said, there are indeed React components that are allowed to use async/await
and return a promise. So-called React Server Components are not restricted to returning
JSX code, strings, etc. This feature will be discussed in detail in Chapter 16, React Server
Components & Server Actions.

https://academind.com/tutorials/xhr-fetch-axios-the-fetch-api
https://academind.com/tutorials/xhr-fetch-axios-the-fetch-api
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
jsonplaceholder.typicode.com
https://developer.mozilla.org/

Handling Side Effects176

If you were to run the preceding code (which you should not do!), it would at first seem to work. But
behind the scenes, it would actually start an infinite loop, hammering the API with HTTP requests.
This is because, as a result of getting a response from the HTTP request, setLoadedPosts() is used
to set a new state.

Earlier in this book (in Chapter 4, Working with Events and State), you learned that whenever the state of
a component changes, React re-evaluates the component to which the state belongs. “Re-evaluating”
simply means that the component function is executed again (by React, automatically).

Since this BlogPosts component calls fetchPosts() (which sends an HTTP request) directly inside
the component function body, this HTTP request will be sent every time the component function is
executed. And as the state (loadedPosts) is updated as a result of getting a response from that HTTP
request, this process begins again, and an infinite loop is created.

The root problem, in this case, is that sending an HTTP request is a side effect—a concept that will be
explored in greater detail in the next section.

Understanding Side Effects
Side effects are actions or processes that occur in addition to another main process. At least, this is a
concise definition that helps with understanding side effects in the context of a React app.

In the case of a React component, the main process would be the component render cycle in which
the main task of a component is to render the user interface that is defined in the component func-
tion (the returned JSX code). The React component should return the final JSX code, which is then
translated into DOM-manipulating instructions.

For this, React considers state changes as the trigger for updating the user interface. Registering event
handlers such as onClick, adding refs, or rendering child components (possibly by using props) would
be other elements that belong to this main process—because all these concepts are directly related to
the main task of rendering the desired user interface.

Sending an HTTP request, as in the preceding example, is not part of this main process, though. It
doesn’t directly influence the user interface. While the response data might eventually be output on
the screen, it definitely won’t be used in the exact same component render cycle in which the request
is sent (because HTTP requests are asynchronous tasks).

Since sending the HTTP request is not part of the main process (rendering the user interface) that’s
performed by the component function, it’s considered a side effect. It’s invoked by the same function
(the BlogPosts component function), which primarily has a different goal.

Note

If you want to dive deeper into the concept of side effects, you can also explore the follow-
ing discussion about side effects on Stack Overflow: https://softwareengineering.
stackexchange.com/questions/40297/what-is-a-side-effect.

https://softwareengineering.stackexchange.com/questions/40297/what-is-a-side-effect
https://softwareengineering.stackexchange.com/questions/40297/what-is-a-side-effect

Chapter 8 177

If the HTTP request were sent upon a click of a button rather than as part of the main component
function body, it would not be a side effect. Consider this example:

import { useState } from 'react';

import classes from './BlogPosts.module.css';

async function fetchPosts() {
 const response = await fetch('https://jsonplaceholder.typicode.com/posts');
 const blogPosts = await response.json();
 return blogPosts;
}

function BlogPosts() {
 const [loadedPosts, setLoadedPosts] = useState([]);

 function handleFetchPosts() {
 fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));
 }

 return (
 <>
 <button onClick={handleFetchPosts}>Fetch Posts</button>
 <ul className={classes.posts}>
 {loadedPosts.map((post) => (
 <li key={post.id}>{post.title}
))}

 </>
);
}

export default BlogPosts;

This code is almost identical to the previous example, but it has one important difference: a <button>
was added to the JSX code. And it’s this button that invokes a newly added handleFetchPosts() func-
tion, which then sends the HTTP request (and updates the state).

With this change made, the HTTP request is not sent every time the component function re-renders
(that is, is executed again). Instead, it’s only sent whenever the button is clicked, and therefore, this
does not create an infinite loop. The HTTP request, in this case, also doesn’t postulate a side effect,
because the primary goal of handleFetchPosts() (i.e., the main process) is to fetch new posts and
update the state.

Handling Side Effects178

Side Effects Are Not Just about HTTP Requests
In the previous example, you learned about one potential side effect that could occur in a component
function: an HTTP request. You also learned that HTTP requests are not always side effects. It depends
on where they are created.

In general, any action that’s started upon the execution of a React component function is a side effect
if that action is not directly related to the main task of rendering the component’s user interface.

Here’s a non-exhaustive list of examples of side effects:

•	 Sending an HTTP request (as shown previously)
•	 Storing data to or fetching data from browser storage (for example, via the built-in localStorage

object)
•	 Setting timers (via setTimeout()) or intervals (via setInterval())
•	 Logging data to the console via console.log()

Not all side effects cause infinite loops, however. Such loops only occur if the side effect leads to a
state update.

Here’s an example of a side effect that would not cause an infinite loop:

function ControlCenter() {
 function handleStart() {
 // do something ...
 }

 console.log('Component is rendering!'); // this is a side effect!

 return (
 <div>
 <p>Press button to start the review process</p>
 <button onClick={handleStart}>Start</button>
 </div>
);
}

In this example, console.log(…) is a side effect because it’s executed as part of every component
function execution and does not influence the rendered user interface (neither for this specific render
cycle nor indirectly for any future render cycles in this case, unlike the previous example with the
HTTP request).

Of course, using console.log() like this is not causing any problems. During development, it’s quite
normal to log messages or data for debugging purposes. Side effects aren’t necessarily a problem and,
indeed, side effects like this can be used or tolerated.

Chapter 8 179

But you also often need to deal with side effects such as the HTTP request from before. Sometimes,
you need to fetch data when a component renders—probably not for every render cycle, but typically
the first time it is executed (that is, when its generated user interface appears on the screen for the
first time).

React offers a solution for this kind of problem as well.

Dealing with Side Effects with the useEffect() Hook
In order to deal with side effects such as the HTTP request shown previously in a safe way (that is,
without creating an infinite loop), React offers another core Hook: the useEffect() Hook.

The first example can be fixed and rewritten like this:

import { useState, useEffect } from 'react';

import classes from './BlogPosts.module.css';

async function fetchPosts() {
 const response = await fetch('https://jsonplaceholder.typicode.com/posts');
 const blogPosts = await response.json();
 return blogPosts;
}

function BlogPosts() {
 const [loadedPosts, setLoadedPosts] = useState([]);

 useEffect(function () {
 fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));
 }, []);

 return (
 <ul className={classes.posts}>
 {loadedPosts.map((post) => (
 <li key={post.id}>{post.title}
))}

);
}

export default BlogPosts;

Handling Side Effects180

In this example, the useEffect() Hook is imported and used to control the side effect (hence the name
of the Hook, useEffect(), as it deals with side effects in React components). The exact syntax and
usage will be explored in the next section, but if you use this Hook, you can safely run the example
and get some output like this:

Figure 8.1: A list of dummy blog posts and no infinite loop of HTTP requests

In the preceding screenshot, you can see the list of dummy blog post titles, and most importantly,
when inspecting the sent network requests, you find no infinite list of requests.

useEffect() is therefore the solution for problems like the one outlined previously. It helps you deal
with side effects so that you can avoid infinite loops and extract them from your component function’s
main process.

But how does useEffect() work, and how is it used correctly?

How to Use useEffect()
As shown in the previous example code snippet, useEffect(), like all React Hooks, is executed as a
function inside the component function (BlogPosts, in this case).

Although, unlike useState() or useRef(), useEffect() does not return a value, though it does ac-
cept an argument (or, actually, two arguments) like those other Hooks. The first argument is always
a function. In this case, the function passed to useEffect() is an anonymous function, created via
the function keyword.

Alternatively, you could also provide an anonymous function created as an arrow function (useEffect(()
=> { … })) or point at some named function (useEffect(doSomething)). The only thing that matters is
that the first argument passed to useEffect() must be a function. It must not be any other kind of value.

Chapter 8 181

In the preceding example, useEffect() also receives a second argument: an empty array ([]). The
second argument must be an array, but providing it is optional. You could also omit the second ar-
gument and just pass the first argument (the function) to useEffect(). However, in most cases, the
second argument is needed to achieve the correct behavior. Both arguments and their purpose will
be explored in greater detail as follows.

The first argument is a function that will be executed by React. It will be executed after every compo-
nent render cycle (that is, after every component function execution).

In the preceding example, if you only provide this first argument and omit the second, you will therefore
still create an infinite loop. There will be an (invisible) timing difference because the HTTP request
will now be sent after every component function execution (instead of as part of it), but you will still
trigger a state change, which will still trigger the component function to execute again. Therefore,
the effect function will run again, and an infinite loop will be created. In this case, the side effect will
be extracted out of the component function technically, but the problem with the infinite loop will
not be solved:

useEffect(function () {
 fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));
}); // this would cause an infinite loop again!

Extracting side effects out of React component functions is the main job of useEffect(), and so only
the first argument (the function that contains the side effect code) is mandatory. But, as mentioned
previously, you will also typically need the second argument to control the frequency with which the
effect code will be executed, because that’s what the second argument (an array) will do.

The second parameter received by useEffect() is always an array (unless it’s omitted). This array
specifies the dependencies of the effect function. Any dependency specified in this array will, once it
changes, cause the effect function to execute again. If no array is specified (that is, if the second argu-
ment is omitted), the effect function will be executed again for every component function execution:

useEffect(function () {
 fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));
}, []);

In the preceding example, the second argument was not omitted, but it’s an empty array. This informs
React that this effect function has no dependencies. Therefore, the effect function will never be ex-
ecuted again. Instead, it will only be executed once, when the component is rendered for the first
time. If you set no dependencies (by providing an empty array), React will execute the effect function
once—directly after the component function was executed for the first time.

It’s important to note that specifying an empty array is very different from omitting it. If it is omitted,
no dependency information is provided to React. Therefore, React executes the effect function after
every component re-evaluation. If an empty array is provided instead, you explicitly state that this
effect has no dependencies and therefore should only run once.

Handling Side Effects182

This brings up another important question, though: when should you add dependencies? And how
exactly are dependencies added or specified?

Effects and Their Dependencies
Omitting the second argument to useEffect() causes the effect function (the first argument) to execute
after every component function execution. Providing an empty array causes the effect function to run
only once (after the first component function invocation). But is that all you can control?

No, it isn’t.

The array passed to useEffect() can and should contain all variables, constants, or functions that
are used inside the effect function—if those variables, constants, or functions were defined inside the
component function (or in some parent component function, passed down via props).

Consider this example:

import { useState, useEffect } from 'react';

import classes from './BlogPosts.module.css';

async function fetchPosts(url) {
 const response = await fetch(url);
 const blogPosts = await response.json();
 return blogPosts;
}

function BlogPosts({ url }) {
 const [loadedPosts, setLoadedPosts] = useState([]);

 useEffect(function () {
 fetchPosts(url)
 .then((fetchedPosts) => setLoadedPosts(fetchedPosts));
 }, [url]);

 return (
 <ul className={classes.posts}>
 {loadedPosts.map((post) => (
 <li key={post.id}>{post.title}
))}

);
}

export default BlogPosts;

Chapter 8 183

This example is based on the previous example, but was adjusted in one important place: BlogPosts
now accepts a url prop.

Therefore, this component can now be used and configured by other components. Of course, if some
other component sets a URL that doesn’t return a list of blog posts, the app won’t work as intended.
This component therefore might be of limited practical use, but it does show the importance of effect
dependencies quite well.

But if that other component changes the URL (e.g., due to some user input there), a new request
should be sent, of course. So BlogPosts should send another fetch request every time the url prop
value changes.

That’s why url was added to the dependencies array of useEffect(). If the array had been kept empty,
the effect function would only run once (as described in the previous section). Therefore, any changes
to url wouldn’t have any effect (no pun intended) on the effect function or the HTTP request executed
as part of that function. No new HTTP request would be sent.

By adding url to the dependencies array, React registers this value (in this case, a prop value, but
any value can be registered) and re-executes the effect function whenever that value changes (that is,
whenever a new url prop value is set by the component that uses BlogPosts).

The most common types of effect dependencies are state values, props, and functions that might be
executed inside of the effect function. The latter will be analyzed in greater depth later in this chapter.

As a rule, you should add all values (including functions) that are used inside an effect function to the
effect dependencies array.

With this new knowledge in mind, if you take another look at the preceding useEffect() example
code, you might spot some missing dependencies:

useEffect(function () {
 fetchPosts(url)
 .then((fetchedPosts) => setLoadedPosts(fetchedPosts));
}, [url]);

Why are fetchPosts, fetchedPosts, and setLoadedPosts not added as dependencies? These are, after
all, values and functions used inside of the effect function. The next section will address this in detail.

Unnecessary Dependencies
In the previous example, it might seem as if fetchPosts, fetchedPosts, and setLoadedPosts should
be added as dependencies to useEffect(), as shown here:

useEffect(function () {
 fetchPosts(url)
 .then((fetchedPosts) => setLoadedPosts(fetchedPosts));
}, [url, fetchPosts, fetchedPosts, setLoadedPosts]);

However, for fetchPosts and fetchedPosts, this would be incorrect. And for setLoadedPosts, it
would be unnecessary.

Handling Side Effects184

fetchedPosts should not be added because it’s not an external dependency. It’s a local variable (or
argument, to be precise), defined and used inside the effect function. It’s not defined in the component
function to which the effect belongs. If you try to add it as a dependency, you’ll get an error:

Figure 8.2: An error occurred—fetchedPosts could not be found

fetchPosts, the function that sends the actual HTTP request, is not a function defined inside of the
effect function. But it still shouldn’t be added because it is defined outside the component function.

Therefore, there is no way for this function to change. It’s defined once (in the BlogPosts.jsx file),
and it can’t change. That said, this would not be the case if it were defined inside the component func-
tion. In that case, whenever the component function executes again, the fetchPosts function would
be recreated as well. This is a scenario that will be discussed later in this chapter (in the Functions as
Dependencies section).

In this example though, fetchPosts can’t change. Therefore, it doesn’t have to be added as a depen-
dency (and consequently should not be). The same would be true for functions, or any kind of values,
provided by the browser or third-party packages. Any value that’s not defined inside a component
function shouldn’t be added to the dependencies array.

So fetchedPosts and fetchPosts should both not be added (for different reasons). What about
setLoadedPosts?

setLoadedPosts is the state updating function returned by useState() for the loadedPosts state value.
Therefore, like fetchPosts, it’s a function. Unlike fetchPosts, though, it’s a function that’s defined
inside the component function (because useState() is called inside the component function). It’s a
function created by React (since it’s returned by useState()), but it’s still a function. Theoretically,
it should therefore be added as a dependency. And indeed, you can add it without any negative con-
sequences.

Note

It may be confusing that a function could change—after all, the logic is hardcoded, right?
But in JavaScript, functions are actually just objects and therefore may change. When the
code that contains a function is executed again (e.g., a component function being executed
again by React), a new function object will be created in memory.

If this is not something you’re familiar with, the following resource should be helpful:
https://academind.com/tutorials/javascript-functions-are-objects.

https://academind.com/tutorials/javascript-functions-are-objects

Chapter 8 185

But state updating functions returned by useState() are a special case: React guarantees that those
functions will never change or be recreated. When the surrounding component function (BlogPosts)
is executed again, useState() also executes again. However, a new state updating function is only
created the first time a component function is called by React. Subsequent executions don’t lead to a
new state updating function being created.

Because of this special behavior (i.e., React guaranteeing that the function itself never changes), state
updating functions may (and actually should) be omitted from the dependencies array.

For all these reasons, fetchedPosts, fetchPosts, and setLoadedPosts should all not be added to the
dependencies array of useEffect(). url is the only dependency used by the effect function that may
change (that is, when the user enters a new URL into the input field) and therefore should be listed
in the array.

To sum it up, when it comes to adding values to the effect dependencies array, there are three kinds
of exceptions:

•	 Internal values (or functions) that are defined and used inside the effect (such as fetchedPosts)
•	 External values that are not defined inside a component function (such as fetchPosts)
•	 State updating functions (such as setLoadedPosts)

In all other cases, if a value is used in the effect function, it must be added to the dependencies array!
Omitting values incorrectly can lead to unexpected effect executions (that is, an effect executing too
often or not often enough).

Cleaning Up after Effects
To perform a certain task (for example, sending an HTTP request), many effects should simply be
triggered when their dependencies change. While some effects can be re-executed multiple times
without issue, there are also effects that, if they execute again before the previous task has finished,
are an indication that the task performed needs to be canceled. Or, maybe there is some other kind
of cleanup work that should be performed when the same effect executes again.

Here’s an example, where an effect sets a timer:

import { useState, useEffect } from 'react';

function Alert() {
 const [alertDone, setAlertDone] = useState(false);

 useEffect(function () {
 console.log('Starting Alert Timer!');
 setTimeout(function () {
 console.log('Timer expired!');
 setAlertDone(true);
 }, 2000);
 }, []);

Handling Side Effects186

 return (
 <>
 {!alertDone && <p>Relax, you still got some time!</p>}
 {alertDone && <p>Time to get up!</p>}
 </>
);
}

export default Alert;

This Alert component is used in the App component:

import { useState } from 'react';

import Alert from './components/Alert.jsx';

function App() {
 const [showAlert, setShowAlert] = useState(false);

 function handleShowAlert() {
 // state updating is done by passing a function to setShowAlert
 // because the new state depends on the previous state (it's the opposite)
 setShowAlert((isShowing) => !isShowing);
 }

 return (
 <>
 <button onClick={handleShowAlert}>
 {showAlert ? 'Hide' : 'Show'} Alert
 </button>
 {showAlert && <Alert />}
 </>
);
}

export default App;

In the App component, the Alert component is shown conditionally. The showAlert state is toggled
via the handleShowAlert function (which is triggered upon a button click).

In the Alert component, a timer is set using useEffect(). Without useEffect(), an infinite loop
would be created, since the timer, upon expiration, changes some component state (the alertDone
state via the setAlertDone state updating function).

Chapter 8 187

The dependency array is an empty array because this effect function does not use any component
values, variables, or functions. console.log() and setTimeout() are functions built into the brows-
er (and therefore external functions), and setAlertDone() can be omitted because of the reasons
mentioned in the previous section.

If you run this app and then start toggling the alert (by clicking the button), you’ll notice strange be-
havior. The timer is set every time the Alert component is rendered. But it’s not clearing the existing
timer. This is due to the fact that multiple timers are running simultaneously, as you can clearly see
if you look at the JavaScript console in your browser’s developer tools:

Figure 8.3: Multiple timers are started

This example is deliberately kept simple, but there are other scenarios in which you may have an on-
going HTTP request that should be aborted before a new one is sent. There are cases like that, where
an effect should be cleaned up first before it runs again.

React also provides a solution for those kinds of situations: the effect function passed as a first argu-
ment to useEffect() can return an optional cleanup function. If you do return a function inside your
effect function, React will execute that function every time before it runs the effect again.

Here’s the useEffect() call of the Alert component with a cleanup function being returned:

useEffect(function () {
 let timer;

 console.log('Starting Alert Timer!');
 timer = setTimeout(function () {
 console.log('Timer expired!');
 setAlertDone(true);
 }, 2000);

 return function() {
 clearTimeout(timer);

Handling Side Effects188

 }
}, []);

In this updated example, a new timer variable (a local variable that is only accessible inside the effect
function) is added. That variable stores a reference to the timer that’s created by setTimeout(). This
reference can then be used together with clearTimeout() to remove a timer.

The timer is removed in a function returned by the effect function—which is the cleanup function that
will be executed automatically by React before the effect function is called the next time.

You can see the cleanup function in action if you add a console.log() statement to it:

return function() {
 console.log('Cleanup!');
 clearTimeout(timer);
}

In your JavaScript console, this looks as follows:

Figure 8.4: The cleanup function is executed before the effect runs again

In the preceding screenshot, you can see that the cleanup function is executed (indicated by the
Cleanup! log) right before the effect function is executed again. You can also see that the timer is
cleared successfully: the first timer never expires (there is no Timer expired! log for the first timer
in the screenshot).

The cleanup function is not executed when the effect function is called for the first time. However,
it will be called by React whenever a component that contains an effect unmounts (that is, when it’s
removed from the DOM).

If an effect has multiple dependencies, the effect function will be executed whenever any of the
dependency values change. Therefore, the cleanup function will also be called every time some de-
pendency changes.

Chapter 8 189

Dealing with Multiple Effects
Thus far, all the examples in this chapter have dealt with only one useEffect() call. You are not lim-
ited to only one call per component though. You can call useEffect() as often as needed—and can
therefore register as many effect functions as needed.

But how many effect functions do you need?

You could start putting every side effect into its own useEffect() wrapper. You could put every HTTP
request, every console.log() statement, and every timer into separate effect functions.

That said, as you can see in some of the previous examples—specifically, the code snippet in the pre-
vious section—that’s not necessary. There, you have multiple effects in one useEffect() call (three
console.log() statements and one timer).

A better approach would be to split your effect functions by dependencies. If one side effect depends
on state A and another side effect depends on state B, you could put them into separate effect functions
(unless those two states are related), as shown here:

function Demo() {
 const [a, setA] = useState(0); // state updating functions aren't called
 const [b, setB] = useState(0); // in this example

 useEffect(function() {
 console.log(a);
 }, [a]);

 useEffect(function() {
 console.log(b);
 }, [b]);

 // return some JSX code ...
}

But the best approach is to split your effect functions by logic. If one effect deals with fetching data
via an HTTP request and another effect is about setting a timer, it will often make sense to put them
into different effect functions (that is, different useEffect() calls).

Functions as Dependencies
Different effects have different kinds of dependencies, and one common kind of dependency is func-
tions.

As mentioned previously, functions in JavaScript are just objects. Therefore, whenever some code that
contains a function definition is executed, a new function object is created and stored in memory. When
calling a function, it’s that specific function object in memory that is executed. In some scenarios (for
example, for functions defined in component functions), it’s possible that multiple objects based on
the same function code exist in memory.

Handling Side Effects190

Because of this behavior, functions that are referenced in code are not necessarily equal, even if they
are based on the same function definition.

Consider this example:

function Alert() {
 function setAlert() {
 setTimeout(function() {
 console.log('Alert expired!');
 }, 2000);
 }

 useEffect(function() {
 setAlert();
 }, [setAlert]);

 // return some JSX code ...
}

In this example, instead of creating a timer directly inside the effect function, a separate setAlert()
function is created in the component function. That setAlert() function is then used in the effect
function passed to useEffect(). Since that function is used there, and because it’s defined in the
component function, it should be added as a dependency to useEffect().

Another reason for this is that every time the Alert component function is executed again (e.g., because
some state or prop value changes), a new setAlert function object will be created. In this example, that
wouldn’t be problematic because setAlert only contains static code. A new function object created
for setAlert would work exactly in the same way as the previous one; therefore, it would not matter.

But now consider this adjusted example:

function Alert() {
 const [alertMsg, setAlertMsg] = useState('Expired!');

 function handleChangeAlertMsg(event) {
 setAlertMsg(event.target.value);
 }

 function setAlert() {
 setTimeout(function () {

Note

The complete app can be found on GitHub at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/08-effects/examples/function-dependencies.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/examples/function-dependencies
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/examples/function-dependencies

Chapter 8 191

 console.log(alertMsg);
 }, 2000);
 }

 useEffect(
 function () {
 setAlert();
 },
 []
);

 return <input type="text" onChange={handleChangeAlertMsg} />;
}

export default Alert;

Now, a new alertMsg state is used for setting the actual alert message that’s logged to the console. In
addition, the setAlert dependency was removed from useEffect().

If you run this code, you’ll get the following output:

Figure 8.5: The console log does not reflect the entered value

In this screenshot, you can see that, despite a different value being entered into the input field, the
original alert message is output.

The reason for this behavior is that the new alert message is not picked up. It’s not used because, despite
the component function being executed again (because the state changed), the effect is not executed
again. And the original execution of the effect still uses the old version of the setAlert function—the
old setAlert function object, which has the old alert message locked in. That’s how JavaScript func-
tions work, and that’s why, in this case, the desired result is not achieved.

The solution to the problem is simple though: add setAlert as a dependency to useEffect(). You
should always add all values, variables, or functions used in an effect as dependencies, and this ex-
ample shows why you should do that. Even functions can change.

Handling Side Effects192

If you add setAlert to the effect dependency array, you’ll get a different output:

useEffect(
 function () {
 setAlert();
 },
 [setAlert]
);

Please note that only a pointer to the setAlert function is added. You don’t execute the function in
the dependencies array (that would add the return value of the function as a dependency, which is
typically not the goal).

Figure 8.6: Multiple timers are started

Now, a new timer is started for every keystroke, and as a result, the entered message is output in the
console.

Of course, this might also not be the desired result. You might only be interested in the final error
message that was entered. This can be achieved by adding a cleanup function to the effect (and ad-
justing setAlert a little bit):

function setAlert() {
 return setTimeout(function () {
 console.log(alertMsg);
 }, 2000);
}

useEffect(
 function () {

Chapter 8 193

 const timer = setAlert();

 return function () {
 clearTimeout(timer);
 };
 },
 [setAlert]
);

As shown in the Cleaning Up after Effects section, the timer is cleared with the help of a timer reference
and clearTimeout() in the effect’s cleanup function.

After adjusting the code like this, only the final alert message that was entered will be output.

Seeing the cleanup function in action again is helpful; the main takeaway is the importance of adding
all dependencies, though—including function dependencies.

An alternative to including the function as a dependency would be to move the entire function defi-
nition into the effect function, because any value that’s defined and used inside of an effect function
must not be added as a dependency:

useEffect(
 function () {
 function setAlert() {
 return setTimeout(function () {
 console.log(alertMsg);
 }, 2000);
 }

 const timer = setAlert();

 return function () {
 clearTimeout(timer);
 };
 },
 []
);

Of course, you could also get rid of the setAlert function altogether then and just move the function’s
code into the effect function.

Either way, you will have to add a new dependency, alertMsg, which is now used inside of the effect
function. Even though the setAlert function isn’t a dependency anymore, you still must add any
values used (and alertMsg is used in the effect function now):

useEffect(

Handling Side Effects194

 function () {
 function setAlert() {
 return setTimeout(function () {
 console.log(alertMsg);
 }, 2000);
 }

 const timer = setAlert();

 return function () {
 clearTimeout(timer);
 };
 },
 [alertMsg]
);

Hence, this alternative way of writing the code just comes down to personal preferences. It does not
reduce the number of dependencies.

You would get rid of a function dependency if you were to move the function out of the component
function. This is because, as mentioned in the Unnecessary Dependencies section, external dependencies
(for example, those built into the browser or defined outside of component functions) should not be
added as dependencies.

However, in the case of the setAlert function, this is not possible because setAlert uses alertMsg.
Since alertMsg is a component state value, the function that uses it must be defined inside the com-
ponent function; otherwise, it won’t have access to that state value.

This can all sound quite confusing, but it comes down to two simple rules:

•	 Always add all non-external dependencies—no matter whether they’re variables or functions.
•	 Functions are just objects and can change if their surrounding code executes again.

Avoiding Unnecessary Effect Executions
Since all dependencies should be added to useEffect(), you sometimes end up with code that causes
an effect to execute unnecessarily.

Consider the example component below:

Note

The complete example can be found on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/examples/
unnecessary-executions.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/examples/unnecessary-executions
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/examples/unnecessary-executions
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/examples/unnecessary-executions

Chapter 8 195

import { useState, useEffect } from 'react';

function Alert() {
 const [enteredEmail, setEnteredEmail] = useState('');
 const [enteredPassword, setEnteredPassword] = useState('');

 function handleUpdateEmail(event) {
 setEnteredEmail(event.target.value);
 }

 function handleUpdatePassword(event) {
 setEnteredPassword(event.target.value);
 }

 function validateEmail() {
 if (!enteredEmail.includes('@')) {
 console.log('Invalid email!');
 }
 }

 useEffect(function () {
 validateEmail();
 }, [validateEmail]);

 return (
 <form>
 <div>
 <label>Email</label>
 <input type="email" onChange={handleUpdateEmail} />
 </div>
 <div>
 <label>Password</label>
 <input type="password" onChange={handleUpdatePassword} />
 </div>
 <button>Save</button>
 </form>
);
}

export default Alert;

Handling Side Effects196

This component contains a form with two inputs. The entered values are stored in two different state
values (enteredEmail and enteredPassword). The validateEmail() function then performs some
email validation and, if the email address is invalid, logs a message to the console. validateEmail()
is executed with the help of useEffect().

The problem with this code is that the effect function will be executed whenever validateEmail
changes because, correctly, validateEmail was added as a dependency. But validateEmail will change
whenever the component function is executed again. And that’s not just the case for state changes to
enteredEmail but also whenever enteredPassword changes—even though that state value is not used
at all inside of validateEmail.

This unnecessary effect execution can be avoided with various solutions:

•	 You could move the code inside of validateEmail directly into the effect function (enteredEmail
would then be the only dependency of the effect, avoiding effect executions when any other
state changes).

•	 You could avoid using useEffect() altogether since you could perform email validation inside
of handleUpdateEmail. Having console.log() (a side effect) in there would be acceptable
since it wouldn’t cause any harm.

•	 You could call validateEmail() directly in the component function—since it doesn’t change
any state, it wouldn’t trigger an infinite loop.

Of course, in some other scenarios, you might need to use useEffect(). Fortunately, React also offers
a solution for situations like this: you can wrap the function that’s used as a dependency with another
React Hook, the useCallback() Hook.

The adjusted code would look like this:

import { useState, useEffect, useCallback } from 'react';

function Alert() {
 const [enteredEmail, setEnteredEmail] = useState('');
 const [enteredPassword, setEnteredPassword] = useState('');

 function handleUpdateEmail(event) {
 setEnteredEmail(event.target.value);
 }

Note

There is an article in the official React documentation that highlights scenarios where
you might not need useEffect(): https://react.dev/learn/you-might-not-need-
an-effect.

In addition, I created a video that summarizes the most important situations in which you
do or do not need useEffect(): https://www.youtube.com/watch?v=V1f8MOQiHRw.

https://react.dev/learn/you-might-not-need-an-effect
https://react.dev/learn/you-might-not-need-an-effect
https://www.youtube.com/watch?v=V1f8MOQiHRw

Chapter 8 197

 function handleUpdatePassword(event) {
 setEnteredPassword(event.target.value);
 }

 const validateEmail = useCallback(
 function () {
 if (!enteredEmail.includes('@')) {
 console.log('Invalid email!');
 }
 },
 [enteredEmail]
);

 useEffect(
 function() {
 validateEmail();
 },
 [validateEmail]
);

 // return JSX code ...
}

export default Alert;

useCallback(), like all React Hooks, is a function that’s executed directly inside the component
function. Like useEffect(), it accepts two arguments: another function (which can be anonymous
or a named function) and a dependencies array.

Unlike useEffect(), though, useCallback() does not execute the received function. Instead,
useCallback() ensures that a function is only recreated if one of the specified dependencies has
changed. The default JavaScript behavior of creating a new function object whenever the surrounding
code executes again is (synthetically) disabled.

useCallback() returns the latest saved function object. Hence, that returned value (which is a func-
tion) is saved in a variable or constant (validateEmail in the previous example).

Since the function wrapped by useCallback() now only changes when one of the dependencies
changes, the returned function can be used as a dependency for useEffect() without executing that
effect for all kinds of state changes or component updates.

In the case of the preceding example, the effect function would then only execute when enteredEmail
changes—because that’s the only change that will lead to a new validateEmail function object being
created.

Handling Side Effects198

Another common reason for unnecessary effect execution is the usage of objects as dependencies,
like in this example:

import { useEffect } from 'react';

function Error(props) {
 useEffect(
 function () {
 // performing some error logging
 // in a real app, a HTTP request might be sent to some analytics API
 console.log('An error occurred!');
 console.log(props.message);
 },
 [props]
);

 return <p>{props.message}</p>;
}

export default Error;

This Error component is used in another component, the Form component, like this:

import { useState } from 'react';

import Error from './Error.jsx';

function Form() {
 const [enteredEmail, setEnteredEmail] = useState('');
 const [errorMessage, setErrorMessage] = useState('');

 function handleUpdateEmail(event) {
 setEnteredEmail(event.target.value);
 }

 function handleSubmitForm(event) {
 event.preventDefault();
 if (!enteredEmail.endsWith('.com')) {
 setErrorMessage('Only email addresses ending with .com are accepted!');

Chapter 8 199

 }
 }

 return (
 <form onSubmit={handleSubmitForm}>
 <div>
 <label>Email</label>
 <input type="email" onChange={handleUpdateEmail} />
 </div>
 {errorMessage && <Error message={errorMessage} />}
 <button>Submit</button>
 </form>
);
}

export default Form;

The Error component receives an error message via props (props.message) and displays it on the
screen. In addition, with the help of useEffect(), it does some error logging. In this example, the
error is simply output to the JavaScript console. In a real app, the error might be sent to some analytics
API via an HTTP request. Either way, a side effect that depends on the error message is performed.

The Form component contains two state values, tracking the entered email address as well as the
error status of the input. If an invalid input value is submitted, errorMessage is set and the Error
component is displayed.

The interesting part about this example is the dependency array of useEffect() inside the Error
component. It contains the props object as a dependency (props is always an object, grouping all prop
values together). When using objects (props or any other object; it does not matter) as dependencies
for useEffect(), unnecessary effect function executions can be the result.

You can see this problem in this example. If you run the app and enter an invalid email address (e.g.,
test@test.de), you’ll notice that subsequent keystrokes in the email input field will cause the error
message to be logged (via the effect function) for every keystroke.

Note

The full code can be found on GitHub at https://github.com/mschwarzmueller/book-
react-key-concepts-e2/tree/08-effects/examples/objects-as-dependencies.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/examples/objects-as-dependencies
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/examples/objects-as-dependencies

Handling Side Effects200

Figure 8.7: A new error message is logged for every keystroke

Those extra executions can occur because component re-evaluations (i.e., component functions being
invoked again by React) will produce brand-new JavaScript objects. Even if the values of properties of
those objects did not change (as in the preceding example), technically, a brand-new object in memory
is created by JavaScript. Since the effect depends on the entire object, React only “sees” that there is
a new version of that object and hence runs the effect again.

In the preceding example, a new props object (for the Error component) is created whenever the
Form component function is called by React—even if the error message (the only prop value that’s
set) did not change.

In this example, that’s just annoying since it clutters the JavaScript console in the developer tools. How-
ever, if you were sending an HTTP request to some analytics backend API, it could cause bandwidth
problems and make the app slower. Therefore, it’s best if you get into the habit of avoiding unnecessary
effect executions as a general rule.

In the case of object dependencies, the best way to avoid unnecessary executions is to simply destruc-
ture the object so that you can pass only those object properties as dependencies that are needed by
the effect:

function Error(props) {
 const { message } = props; // destructure to extract required properties

 useEffect(
 function () {
 console.log('An error occurred!');

Chapter 8 201

 console.log(message);
 },
 // [props] // don't use the entire props object!
 [message]
);

 return <p>{message}</p>;
}

In the case of props, you could also destructure the object right in the component function parameter
list:

function Error({message}) {
 // ...
}

Using this approach, you ensure that only the required property values are set as dependencies. There-
fore, even if the object gets recreated, the property value (in this case, the value of the message prop-
erty) is the only thing that matters. If it doesn’t change, the effect function won’t be executed again.

Effects and Asynchronous Code
Some effects deal with asynchronous code (sending HTTP requests is a typical example). When per-
forming asynchronous tasks in effect functions, there is one important rule to keep in mind, though:
the effect function itself should not be asynchronous and should not return a promise. This does not
mean that you can’t work with promises in effects—you just must not return a promise.

You might want to use async/await to simplify asynchronous code, but when doing so inside of an
effect function, it’s easy to accidentally return a promise. For example, the following code would work
but does not follow best practices:

useEffect(async function () {
 const fetchedPosts = await fetchPosts();
 setLoadedPosts(fetchedPosts);
}, []);

Adding the async keyword in front of function unlocks the usage of await inside the function—which
makes dealing with asynchronous code (that is, with promises) more convenient.

Handling Side Effects202

But the effect function passed to useEffect() should only return a normal function, if anything. It
should not return a promise. Indeed, React actually issues a warning when trying to run code like
the preceding snippet:

Figure 8.8: React shows a warning about async being used in an effect function

To avoid this warning, you can use promises without async/await, like this:

useEffect(function () {
 fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));
}, []);

This works because the effect function doesn’t return the promise.

Alternatively, if you want to use async/await, you can create a separate wrapper function inside of
the effect function, which is then executed in the effect:

useEffect(function () {
 async function loadData() {
 const fetchedPosts = await fetchPosts();
 setLoadedPosts(fetchedPosts);
 }

 loadData();
}, []);

By doing that, the effect function itself is not asynchronous (it does not return a promise), but you
can still use async/await.

Rules of Hooks
In this chapter, two new Hooks were introduced: useEffect() and useCallback(). Both Hooks are
very important—useEffect() especially, as this is a Hook you will typically use a lot. Together with
useState() (introduced in Chapter 4, Working with Events and State) and useRef() (introduced in
Chapter 7, Portals and Refs), you now have a solid set of key React Hooks.

Chapter 8 203

When working with React Hooks, there are two rules (the so-called rules of Hooks) you must follow:

•	 Only call Hooks at the top level of component functions. Don’t call them inside of if statements,
loops, or nested functions.

•	 Only call Hooks inside of React components or custom Hooks (custom Hooks will be covered
in Chapter 12, Building Custom React Hooks).

These rules exist because React Hooks won’t work as intended if used in a non-compliant way. Fortu-
nately, React will generate a warning message if you violate one of these rules; hence, you will notice
if you accidentally do so.

Summary and Key Takeaways
•	 Actions that are not directly related to the main process of a function can be considered side

effects.
•	 Side effects can be asynchronous tasks (for example, sending an HTTP request), but can also

be synchronous (for example, console.log() or accessing browser storage).
•	 Side effects are often needed to achieve a certain goal, but it’s a good idea to separate them

from the main process of a function.
•	 Side effects can become problematic if they cause infinite loops (because of the update cycles

between effect and state).
•	 useEffect() is a React Hook that should be used to wrap side effects and perform them in a

safe way.
•	 useEffect() takes an effect function and an array of effect dependencies.
•	 The effect function is executed directly after the component function is invoked (not simul-

taneously).
•	 Any value, variable, or function used inside of an effect should be added to the dependencies

array.
•	 Dependency array exceptions are external values (defined outside of a component function),

state updating functions, or values defined and used inside of the effect function.
•	 If no dependency array is specified, the effect function executes after every component func-

tion invocation.
•	 If an empty dependency array is specified, the effect function runs once when the component

first mounts (that is, when it is created for the first time).
•	 Effect functions can also return optional cleanup functions that are called right before an

effect function is executed again (and right before a component is removed from the DOM).
•	 Effect functions must not return promises.
•	 For function dependencies, useCallback() can help reduce the number of effect executions.
•	 For object dependencies, destructuring can help reduce the number of effect executions.

Handling Side Effects204

What’s Next?
Dealing with side effects is a common problem when building apps because most apps need some kind
of side effects (for example, sending an HTTP request) to work correctly. Therefore, side effects aren’t
a problem themselves, but they can cause problems (for example, infinite loops) if handled incorrectly.

With the knowledge gained in this chapter, you know how to handle side effects efficiently with
useEffect() and related key concepts.

Many side effects are triggered because of user input or interaction—for example, because some form
was submitted. The next chapter will revisit the concept of form submissions by exploring React’s
form actions feature.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/08-effects/exercises/questions-answers.
md:

1.	 How would you define a side effect?
2.	 What’s a potential problem that could arise with some side effects in React components?
3.	 How does the useEffect() Hook work?
4.	 Which values should not be added to the useEffect() dependencies array?
5.	 Which value can be returned by the effect function? And which kind of value must not be

returned?

Apply What You Learned
Now that you know about effects, you can add even more exciting features to your React apps. Fetching
data via HTTP upon rendering a component is just as easy as accessing browser storage when some
state changes.

In the following section, you’ll find an activity that allows you to practice working with effects and
useEffect(). As always, you will need to employ some of the concepts covered in earlier chapters
(such as working with state).

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/08-effects/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/08-effects/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/08-effects/exercises/questions-answers.md

Chapter 8 205

Activity 8.1: Building a Basic Blog
In this activity, you must add logic to an existing React app to render a list of blog post titles fetched
from a backend web API and submit newly added blog posts to that same API. The backend API used
is https://jsonplaceholder.typicode.com/, which is a dummy API that doesn’t actually store any
data you send to it. It will always return the same dummy data, but it’s perfect for practicing sending
HTTP requests.

As a bonus, you can also add logic to change the text of the submit button while the HTTP request to
save the new blog post is on its way.

Use your knowledge about effects and browser-side HTTP requests to implement a solution.

After downloading the code and running npm install in the project folder to install all required
dependencies, the solution steps are as follows:

1.	 Send a GET HTTP request to the dummy API to fetch blog posts inside the App component
(when the component is first rendered).

2.	 Display the fetched dummy blog posts on the screen.
3.	 Handle form submissions and send a POST HTTP request (with some dummy data) to the

dummy backend API.
4.	 Bonus: Set the button caption to Saving… while the request is on its way (and to Save when

it’s not).

Note

You can find the starting code for this activity at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/08-effects/activities/practice-1-start.
When downloading this code, you’ll always download the entire repository. Make sure to
then navigate to the subfolder with the starting code (activities/practice-1-start,
in this case) to use the right code snapshot.

For this activity, you need to know how to send HTTP requests (GET, POST, and so on)
via JavaScript (for example, via the fetch() function or with the help of a third-party
library). If you don’t have that knowledge yet, this resource can get you started: http://
packt.link/DJ6Hx.

https://jsonplaceholder.typicode.com/
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/activities/practice-1-start
http://packt.link/DJ6Hx
http://packt.link/DJ6Hx

Handling Side Effects206

The expected result should be a user interface that looks like this:

Figure 8.9: The final user interface

Note

You will find a full example solution here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/08-effects/activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/08-effects/activities/practice-1

9
Handling User Input & Forms with
Form Actions

Introduction
In Chapter 4, Working with Events and State, you learned how to handle form submissions in React
applications. And while there is absolutely nothing wrong with the approach shown there—indeed,
it’s arguably the approach you’ll find in the majority of React projects—React provides an alternative
way of handling form submissions when working in projects that use React version 19 or later. React
19 introduced a new feature called actions (also referred to as form actions throughout this chapter)
that can simplify the process of handling form submissions, extracting user input, and providing
validation feedback.

This chapter will first revisit form submissions as introduced in Chapter 4 and explore how user input
can be extracted and validated. Thereafter, this chapter will introduce form actions and explain how
to perform the same steps (handle submission, extract values, and validate values) using that feature.
You will also learn about action-related React Hooks like useActionState().

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Describe the purpose of React form actions
•	 Build and use custom form actions to handle form submissions
•	 Use the useActionState() Hook to manage form-dependent state
•	 Render a pending UI during submission via the useFormStatus() Hook
•	 Perform optimistic state updates with the useOptimistic() Hook
•	 Implement both synchronous and asynchronous actions

Handling User Input & Forms with Form Actions208

Handling Form Submissions without Actions
As you learned in Chapter 4, Working with Events and State, when not using actions, you can handle
form submissions by listening to the submit event via the onSubmit prop on the <form> element.

Consider the following example code snippet:

function App() {
 function handleSubmit(event) {
 event.preventDefault();
 console.log('Submitted!');
 }

 return (
 <form onSubmit={handleSubmit}>
 <p>
 <label htmlFor="email">Email</label>
 <input type="email" id="email" />
 </p>
 <p>
 <label htmlFor="password">Password</label>
 <input type="password" id="password" />
 </p>
 <p className="actions">
 <button>Login</button>
 </p>
 </form>
);
}

You find the full working example on GitHub: https://github.com/mschwarzmueller/book-react-
key-concepts-e2/tree/09-form-actions/examples/01-form-submission-without-actions.

This code displays a form and handles its submission via the handleSubmit() function. This function
automatically receives an event object, which is used to prevent the browser’s default behavior of
sending an HTTP request to the server hosting the website.

But, of course, just handling the submission isn’t too useful. Typically, you also want to extract and
use values entered by the website user.

Extracting User Input
When it comes to extracting values entered into a form, you have a couple of options:

•	 Track the values via state (i.e., by using useState()), as described in Chapter 4.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/examples/01-form-submission-without-actions
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/examples/01-form-submission-without-actions

Chapter 9 209

•	 Rely on Refs via useRef(), as explained in Chapter 7, Portals and Refs.
•	 Take advantage of the automatically created event object.

Tracking State
You can track the values entered by the user via state managed by useState(), as explained in Chap-
ter 4. For example, the form input values from the previous code snippet can be tracked and used in
handleSubmit(), as shown in the following example:

function App() {
 const [email, setEmail] = useState('');
 const [password, setPassword] = useState('');

 function handleSubmit(event) {
 event.preventDefault();
 const credentials = { email, password };
 console.log(credentials);
 }

 function handleEmailChange(event) {
 setEmail(event.target.value);
 }

 function handlePasswordChange(event) {
 setPassword(event.target.value);
 }

 return (
 <form onSubmit={handleSubmit}>
 <p>
 <label htmlFor="email">Email</label>
 <input
 type="email"
 id="email"
 value={email}
 onChange={handleEmailChange}
 />
 </p>
 <p>
 <label htmlFor="password">Password</label>
 <input
 type="password"
 id="password"

Handling User Input & Forms with Form Actions210

 value={password}
 onChange={handlePasswordChange}
 />
 </p>
 <p className="actions">
 <button>Login</button>
 </p>
 </form>
);
}

In this updated example code snippet, the useState() Hook is used to manage email and password
state values. The state values are updated with every keystroke on the input fields. As a result, the
latest entered values are available inside of handleSubmit() when the form is submitted.

This approach works well and will be found in many React projects. However, there are some potential
downsides to using state to track input values:

•	 Since the state is updated on every keystroke, and the component function is re-executed
whenever some state value changes, application performance could suffer.

•	 When working with more complex forms with more input fields, a lot of different state values
may need to be managed.

You can work around these issues by implementing code optimizations, which will be discussed in
Chapter 10, Behind the Scenes of React and Optimization Opportunities, and by managing state as an object,
as explained in Chapter 11, Working with Complex State.

But you could also consider using Refs to extract input values.

Relying on Refs
If you’re building a form where you don’t plan on setting input values, and where you instead only
want to read those values upon form submission, using React’s ref feature (introduced in Chapter 7)
might make sense:

function App() {
 const emailRef = useRef(null);
 const passwordRef = useRef(null);

 function handleSubmit(event) {
 event.preventDefault();
 const credentials = {
 email: emailRef.current.value,
 password: passwordRef.current.value,
 };
 console.log(credentials);

Chapter 9 211

 }

 return (
 <form onSubmit={handleSubmit}>
 <p>
 <label htmlFor="email">Email</label>
 <input type="email" id="email" ref={emailRef} />
 </p>
 <p>
 <label htmlFor="password">Password</label>
 <input type="password" id="password" ref={passwordRef} />
 </p>
 <p className="actions">
 <button>Login</button>
 </p>
 </form>
);
}

In this code block, the useRef() Hook is used to create two Refs that are connected to the email and
password input fields. These Refs are then used to read the entered values inside of handleSubmit().

When using this approach, the App component function is not executed with every keystroke anymore.
But you still have to write the code where the Refs are created via useRef() and where they are con-
nected to the JSX elements via the ref prop.

That’s why you could consider relying on the browser and the automatically created event object
(which is received in handleSubmit()), instead of using React features to extract those entered values.

Taking Advantage of the event Object
In Chapter 4, Working with Events and State, you learned that the browser tries to send an HTTP request
when a form is submitted. That’s why event.preventDefault() is called inside of handleSubmit()—
this function call ensures that this request is not sent.

However, the event object is not just useful for preventing that default. It also carries important infor-
mation about the submit event that occurred. For example, you can get access to the underlying form
DOM object (i.e., a JavaScript object that describes the rendered <form> element, its configuration,
and its current status) via event.currentTarget.

This is very useful because you can pass that form DOM object to the FormData constructor function
that is provided by the browser. This interface can be used to extract a form’s input field values.

The following example shows the concrete usage of this feature:

function App() {
 function handleSubmit(event) {

Handling User Input & Forms with Form Actions212

 event.preventDefault();
 const fd = new FormData(event.currentTarget);
 const credentials = {
 email: fd.get('email'),
 password: fd.get('password'),
 };
 console.log(credentials);
 }

 return (
 <form onSubmit={handleSubmit}>
 <p>
 <label htmlFor="email">Email</label>
 <input type="email" id="email" name="email" />
 </p>
 <p>
 <label htmlFor="password">Password</label>
 <input type="password" id="password" name="password" />
 </p>
 <p className="actions">
 <button>Login</button>
 </p>
 </form>
);
}

As you can see in the above code snippet, the form data object fd is constructed by instantiating
FormData. As mentioned, the FormData interface is provided by the browser; hence, it doesn’t need
to be imported from React or any other library.

This form data object offers various methods that help with accessing form field values—for example,
the get() method to extract the value of a specific input field. In order to identify the input field for
which you want to get hold of the value, the get() method requires the name of the input field as
an argument. That’s why you must also set the name prop on the form control elements (i.e., on the
<input> elements in the above example).

This approach has the advantage that you need neither state nor Refs; hence, slightly less code must
be written. In addition, since almost no React features are used, this code will be less prone to break
due to possible future React changes.

Consequently, this approach might look like the best way of handling form submissions. But is it?

Chapter 9 213

Which Solution Is Best?
There is no right or wrong way of handling form submissions. Besides personal preference, application
requirements also might favor one approach over the others.

For example, if your application needs to change the input values, using only FormData as shown above
would not be ideal, since you would have to write imperative code to update an input field.

That’s a problem because, as explained in Chapter 1, React – What and Why?, you should avoid writing
code like this in your React apps:

function clearInput() {
 document.getElementById('email').value = ''; // imperative code :(
}

Thus, if you need to edit an input’s value, using state (i.e., useState()) is preferable:

const [email, setEmail] = useState('');
// ... other code
function clearInput() {
 setEmail('');
}

// simplified JSX code below
return (
 <form>
 <input
 value={email}
 onChange={event => setEmail(event.target.value)} />
 </form>
);

Even if you don’t need to update any input fields, the event object and FormData alone might not do
the trick.

For example, if you need to access the input fields outside of handleSubmit(), the event object is not
available. As a result, interacting with the form element and its child elements is not possible via the
event object. In such scenarios, working with Refs that are directly connected to the individual input
elements will likely simplify things.

The following example uses a ref to call the <input> element’s built-in focus() method inside of a
function:

const emailRef = useRef(null);

function showForm() {
 // other code ...

Handling User Input & Forms with Form Actions214

 emailRef.current.focus();
}

// simplified JSX code below
return (
 <form>
 <input ref={emailRef} />
 </form>
);

So, as you can see, there is no silver bullet. All these React features and different ways of handling form
submissions exist for good reasons. You can mix and match them as needed; therefore, it’s helpful to
be aware of these different options.

But even though there are already a couple of ways of handling form submissions, with React 19,
there’s yet another one.

Handling Form Submissions with Actions
React 19 introduced the concept of (form) actions—a concept that actually consists of two kinds of ac-
tions: client actions and server actions. Both types of actions can help with handling form submissions,
but for the purpose of this chapter, the term form actions will be used to describe client actions (i.e.,
form actions that execute in the website user’s browser). Server actions will be covered separately in
Chapter 16, React Server Components & Server Actions.

Form actions were introduced to simplify the process of handling form submissions and data ex-
traction—especially when building full stack apps with server actions. Furthermore, they can also be
very useful when combined with some new React Hooks, which will be discussed later in this chapter.

Here’s how a form submission can be handled via a client form action:

function App() {
 function submitAction(formData) {
 const credentials = {
 email: formData.get('email'),
 password: formData.get('password'),
 };
 console.log(credentials);
 }

 return (
 <form action={submitAction}>
 <p>
 <label htmlFor="email">Email</label>

Chapter 9 215

 <input type="email" id="email" name="email" />
 </p>
 <p>
 <label htmlFor="password">Password</label>
 <input type="password" id="password" name="password" />
 </p>
 <p className="actions">
 <button>Login</button>
 </p>
 </form>
);
}

At first sight, this example may look very similar to the code snippet where the event object and
currentTarget were used to derive the FormData. But if you take a closer look, you’ll see that there
are some key differences:

•	 handleSubmit was renamed submitAction and accepts a parameter named formData instead
of event.

•	 The <form> element no longer has the onSubmit prop—instead, it now has an action prop that
points at the submitAction function.

The name change of the function is optional; there is no technical requirement to name this function
submitAction or anything like that. But changing the name makes sense because the function no
longer directly handles the submit event. Instead, it’s used as a value for the newly added action prop.

And that’s precisely what React’s form action feature is all about: setting the action prop of a <form>
element to a function that React will then invoke on your behalf when the form is submitted. However,
unlike when using the onSubmit prop, React will prevent the browser default and create a form data
object for you (and pass that object as an argument to the action function).

You no longer have to perform these steps manually, and as a result, the form submission can be
handled with a minimal amount of code.

Of course, if you need to set and manage the input values manually, or if you need to interact with
the form fields at some point (e.g., to call focus()), you’ll still need to work with state or Refs. But if
you’re just trying to handle the submission and get hold of the entered values, using the form actions
feature can be very handy.

But form actions are not just useful because they may require less code.

Synchronous vs Asynchronous Actions
Client form actions can be either synchronous or asynchronous, which means you can also use and
return a Promise in the action function. Therefore, you can also use async / await with that function.

Handling User Input & Forms with Form Actions216

For example, if you have a form in an application that aims to store some task data in the browser’s
storage (via the localStorage API), you can do that with a synchronous action (since localStorage
is a synchronous API):

function storeTaskAction(formData) {
 const task = {
 title: formData.get('title'),
 body: formData.get('body'),
 dueDate: formData.get('date')
 };
 localStorage.setItem('daily-task', JSON.stringify(task));
}

This action function is synchronous, since it doesn’t return a Promise or use async / await. Therefore,
as you can see, all form action examples thus far have used synchronous actions.

But if you’re working on a project that needs to submit entered data to a backend via an HTTP request,
you can take advantage of the support for asynchronous code:

async function storeTodoAction(formData) {
 const todoTitle = formData.get('title');
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/todos',
 {
 method: 'POST',
 body: JSON.stringify({ title: todoTitle }),
 headers: {
 'Content-type': 'application/json; charset=UTF-8',
 },
 }
);
 const todo = await response.json();
 console.log(todo);
}

In this example, the async keyword is added in front of the function. This converts the function into
an asynchronous one that will return a Promise.

This flexibility offered by React’s form actions feature is very useful, since it allows you to perform
a broad variety of operations upon form submission. However, it is important to keep in mind that,
for now, all these actions always execute on the client side, i.e., in the browser of the website visitor.
Server-side actions will be explored in Chapter 16.

Chapter 9 217

Behind the Scenes: Actions Are Transitions
Before diving deeper into form actions, it may be helpful to take a brief look under the hood.

This is because, technically, actions (i.e., both client and server actions) in React are so-called transi-
tions. To be precise, they are asynchronous transitions.

Thus, the question is, what’s a transition in React?

In a React app, a transition is a concept, where React will ensure that some potentially time-consuming
state updates will not block UI updates.

Form actions can be considered (potentially) time-consuming state updates; hence, under the hood,
React handles them such that the remaining UI will stay responsive.

As a result, any state updating calls you make inside a form action function will only be processed
by React once that form action is done. For example, the following code will, probably unexpectedly,
only update the UI after three seconds:

import { useState } from 'react';

function App() {
 const [error, setError] = useState(null);

 async function storeTodoAction(formData) {
 const todoTitle = formData.get('title');
 if (!todoTitle || todoTitle.trim() === '') {
 setError('Title is required.'); // state update BEFORE delay
 }
 // 3s delay to simulate a slow process
 await new Promise((resolve) => setTimeout(resolve, 3000));
 console.log('Submission done!');
 }

 return (
 <>
 <form action={storeTodoAction}>
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 {error && <p className="errors">{error}</p>}
 <p className="actions">
 <button>Store Todo</button>

Handling User Input & Forms with Form Actions218

 </p>
 </form>
 </>
);
}

Even though the error state is updated before the delay starts, React will not re-execute the compo-
nent function (and, therefore, update the UI) before the form action as a whole is done. Therefore,
the error message only shows up on the screen after three seconds.

Figure 9.1: The error message only shows up with a delay

Note

You find the complete example code on GitHub: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/09-form-actions/examples/08-transition.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/examples/08-transition
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/examples/08-transition

Chapter 9 219

Managing State Based on Form Submissions
When handling form submissions, it’s quite common that you may also want to update the UI after the
submission. For asynchronous actions, where the executed operation may take a couple of seconds
(depending on the operation, of course), you might even want to update the UI during the submission,
showing some pending state while the submitted form is being processed.

React aims to help you with both requirements by offering two specific form action-related Hooks:
useActionState() and useFormStatus().

Updating UI State with useActionState()
React provides a Hook called useActionState(), which is meant to be used in conjunction with form
actions—no matter whether you work with client or server actions.

The goal of this Hook is to help you update the application’s UI based on the result of a form action.

This can, for example, be helpful to validate form input values and show an error message if there
is invalid input. To perform this task, the useActionState() Hook can be imported from the react
package and used like this:

import { useActionState } from 'react';

function App() {
 async function storeTodoAction(prevState, formData) {
 const todoTitle = formData.get('title');

 if (!todoTitle || todoTitle.trim() === '') {
 return {
 error: 'Title must not be empty.',
 };
 }

 // sending HTTP request etc...
 return {
 error: null,
 };
 }

 const [formState, formAction] = useActionState(storeTodoAction, {
 error: null,
 });

Handling User Input & Forms with Form Actions220

 return (
 <form action={formAction}>
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 {formState.error && <p className='errors'>
 {formState.error}
 </p>}
 <p className="actions">
 <button>Store Todo</button>
 </p>
 </form>
);
}

When running this example application, users will see validation error messages if there is invalid input.

Figure 9.2: An error message is shown when submitting an empty input field

A couple of things are going on in this code example:

•	 The form action function was changed to accept two parameters instead of just one: a previous
state (prevState) and the submitted data (formData).

•	 The form action now also returns a value: an object with a key named error that contains an
error message or null.

•	 The useActionState() Hook is imported and used: it receives the form action function
(storeTodoAction) as a first argument, and some initial state object ({error: null} in this
case) as a second argument.

•	 The useActionState() Hook also returns a value: an array from which two elements are de-
structured (formState and formAction).

Chapter 9 221

•	 The destructured formAction replaces storeTodoAction as a value for the <form>'s action prop.
•	 formState is used to conditionally display the value stored in the error key of formState.

So, as you can see, useActionState() is a Hook that expects a form action function (synchronous or
asynchronous) as a first argument and an initial state as a second input. That initial state is required
to have some state available if the form has not been submitted yet. After form submission, the initial
state will be replaced by new state values returned by the form action function.

Since the purpose of useActionState() is to provide some state value that can be used to update (parts
of) the UI, that derived state is exposed via the value returned by useActionState():

const [formState, formAction] = useActionState(storeTodoAction, {
 error: null,
 }
);

That returned value is an array with exactly three elements, in the following order:

1.	 The current state value, which is either the initial state (if the form wasn’t submitted yet) or
the state value returned by the form action function.

2.	 An updated form action function, which is essentially your action function, wrapped by React.
This is necessary so that React gets access to the value returned by your action function (which
is the new state).

3.	 A boolean value that indicates whether the form is currently being submitted or not. This
third element is not used in the previous code example and will be discussed in the Managing
Pending UI State section of this chapter.

Therefore, when using useActionState(), you no longer bind your action function to the action prop
of the <form> element. Instead, you use the action function created by useActionState()—i.e., you
use the action function that wraps your action function.

When using useActionState(), you also must adjust your form action function because React will call
your function with two arguments instead of just one: the previous state and the submitted form data:

async function storeTodoAction(prevState, formData) {
 // ...
}

The previous form state is passed to your action function so that you can use it to derive your new state
from it (in conjunction with the submitted form data). In the above example, this is actually not the
case—the previous state parameter is not used there. It must be accepted as a parameter nonetheless.

However, that’s not the only change made to the form action function. Instead, it should now also
return a new state value that will then be exposed to the component function by useActionState()
(via the first element in the array returned by useActionState()):

async function storeTodoAction(prevState, formData) {
 // ...

Handling User Input & Forms with Form Actions222

 return {
 error: 'Title must not be empty.'
 };
}

That state value can be anything—a string, a number, an array, an object, etc. In the previous code
example, it’s an object with a key named error that holds either null or a string error message.

Whenever the form is submitted, and the form action function is therefore executed or returns a value,
useActionState() will trigger React to re-execute the surrounding component function. Hence, the
updated state is made available. If that sounds familiar to useState(), you’re right! useActionState()
is essentially like useState(), fine-tuned to derive state from actions.

useActionState() is, therefore, definitely an important Hook, although it’s actually not limited to
just exposing the values returned by your actions to component functions.

Managing Pending UI State with useActionState()
Consider a scenario where you have a form action that takes a couple of seconds to finish its operation.
For example, you could have an action that sends a request to a slow server or via a slow internet
connection. In such scenarios, you might want to update the UI during the form submission to show
the user that something is happening.

In the following example, a function named saveTodo() is called from inside the form action. That
function adds a deliberate delay of three seconds to simulate a slow network or server:

async function saveTodo(todo) {
 // dummy function that simulates a slow backend which manages todos
 await new Promise((resolve) => setTimeout(resolve, 3000)); // delay
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/todos', {
 method: 'POST',
 body: JSON.stringify(todo),
 headers: {
 'Content-type': 'application/json; charset=UTF-8',
 },
 }
);
 const fetchedTodo = await response.json();
 console.log(fetchedTodo);
}

function App() {
 async function storeTodoAction(prevState, formData) {
 const todoTitle = formData.get('title');

Chapter 9 223

 if (!todoTitle || todoTitle.trim() === '') {
 return {
 error: 'Title must not be empty.',
 };
 }

 await saveTodo({ title: todoTitle });
 return {
 error: null,
 };
 }

 // same code as before, hence omitted
}

When using form actions, like in this example, updating the UI while the form submission is handled
is relatively easy because useActionState() exposes a third element in its returned array: a boolean
that indicates whether the action is currently executing or not.

The above example can, therefore, be adjusted like this to take advantage of that boolean value:

function App() {
 async function storeTodoAction(prevState, formData) {
 // same code as before, hence omitted
 }

 const [formState, formAction, pending] = useActionState(
 storeTodoAction,
 {
 error: null,
 }
);

 return (
 <form action={formAction}>
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 {formState.error &&
 <p className="errors">{formState.error}</p>}
 <p className="actions">

Handling User Input & Forms with Form Actions224

 <button disabled={pending}>
 {pending ? 'Saving' : 'Store'} Todo
 </button>
 </p>
 </form>
);
}

The pending element is retrieved from the array via destructuring, and then it is used to disable the
<button> and update the button text.

As a result, the UI changes once the form is submitted—until it’s done after three seconds (in this case,
due to the delay added in the saveTodo() function earlier).

Figure 9.3: The button is disabled and shows Saving Todo fallback text during form submission

Handling Pending UI State with useFormStatus()
The pending element returned by useActionState() is a simple and straightforward, but not the only,
way of updating the UI while a form action executes.

React also offers a useFormStatus() Hook that provides information about the current form submission
status. To be precise, it’s the react-dom package (not react!) that exports this useFormStatus() Hook.

Unlike useActionState(), useFormStatus() must be called in some nested component that’s wrapped
by the <form> element whose submission status you’re interested in.

You could, for example, build a SubmitButton component that’s defined and used as shown in this
code snippet:

import { useFormStatus } from 'react-dom';

import { saveTodo } from './todos.js';

function SubmitButton() {
 const { pending } = useFormStatus();
 return (

Chapter 9 225

 <button disabled={pending}>
 {pending ? 'Saving' : 'Store'} Todo
 </button>
);
}

function App() {
 async function storeTodoAction(formData) {
 const todo = { title: formData.get('title') };
 await saveTodo(todo);
 }

 return (
 <form action={storeTodoAction}>
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 <p className="actions">
 <SubmitButton />
 </p>
 </form>
);
}

In this example, the actual code to send the to-do to a backend server is extracted into a separate
saveTodo() function that’s stored in a todo.js file. That function contains the same code that
was shown in earlier examples (i.e., it sends an HTTP request to JSONPlaceholder). In addition,
useActionState() is removed to make the code a bit shorter and simpler again. However, you can
absolutely use useActionState() in conjunction with useFormStatus(). For example, you could use
useActionState() to output validation errors while managing the submit button’s disabled state via
useFormStatus() in a separate, nested component.

useFormStatus() is imported from react-dom and called inside the SubmitButton component function.
It returns an object that contains a pending property yielding a boolean value.

As mentioned before, useFormStatus() can’t be used in the component where the <form> element is
rendered. Instead, it must be used in a nested component—that’s why the <SubmitButton> component
is placed between the <form> tags.

Handling User Input & Forms with Form Actions226

Besides pending, the object returned by useFormStatus() also holds three other properties:

•	 data: A FormData object that contains the data with which the parent <form> was submitted
(i.e., the same kind of data that the form action function receives).

•	 method: A string value that’s either 'get' or 'post', reflecting the value to which the method
prop on the <form> element was set. By default, it’s 'get'.

•	 action: A pointer to the form action function that’s connected to the <form>.

If you only care about the pending status, you can, of course, either use useActionState() or
useFormStatus(). Working with useActionState() has the advantage that no separate nested
component must be built. On the other hand, creating such an extra component and relying on
useFormStatus() might be useful if you have multiple forms on the page—you could then, for example,
reuse the <SubmitButton> across all those forms.

Performing Optimistic Updates
Besides useActionState() and useFormStatus(), React offers one last important Hook related to
forms and form actions: the useOptimistic() Hook.

The idea behind this Hook is that you can use it to show some temporary, optimistic UI while an asyn-
chronous form action (which may take a couple of seconds) is underway. “Optimistic” means that you
can use this Hook to render a UI that would normally only exist after the form submission is finished
(e.g., a list of to-dos that already includes the newly submitted to-do).

The following example code manages a to-do list with the help of a <form> and form action, but with-
out using useOptimistic():

import { useFormStatus } from 'react-dom';

import { useState } from 'react';

let storedTodos = [];

export async function saveTodo(todo) {
 // dummy function that simulates a slow backend which manages todos
 await new Promise((resolve) => setTimeout(resolve, 3000));
 const newTodo = { ...todo, id: new Date().getTime() };
 storedTodos = [...storedTodos, newTodo];
 return storedTodos;
}

function SubmitButton() {
 // same as before, didn't change, hence omitted here
}

Chapter 9 227

function App() {
 const [todos, setTodos] = useState(storedTodos);

 async function storeTodoAction(formData) {
 const todo = { title: formData.get('title') };
 const updatedTodos = await saveTodo(todo); // takes 3s
 setTodos(updatedTodos);
 }

 return (
 <>
 <form action={storeTodoAction}>
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 <p className="actions">
 <SubmitButton />
 </p>
 </form>
 <div id="todos">
 <h2>My Todos</h2>
 {todos.length === 0 && <p>No todos found.</p>}
 {todos.length > 0 && (

 {todos.map((todo) => (
 <li key={todo.id}>{todo.title}
))}

)}
 </div>
 </>
);
}

Handling User Input & Forms with Form Actions228

In this example, since the saveTodo() function again has a built-in deliberate delay of three seconds,
the website user sees the outdated to-do list until the form submission process is completed.

Figure 9.4: Without optimistic updating, the UI updates are delayed

The user experience can, therefore, be improved by introducing the useOptimistic() Hook.

This Hook requires two arguments and returns an array with exactly two elements:

const [optimisticState, addOptimistic] = useOptimistic(
 state, updateFunction
);

•	 state (the first argument) is the component state that should be active initially or if no form
action is pending.

•	 updateFunction (the second argument) is a function defined by you that controls how the
state should be updated optimistically.

•	 optimisticState is the optimistically updated state that will be active during the form action
execution.

•	 addOptimistic triggers updateFunction and allows you to pass a value to that function.

Applied to the above example, useOptimistic() can be used to manage an alternative, optimistically
updated to-dos array that will be active as long as the form action is executing. Thereafter, the regular
state will be active again (and update the UI accordingly):

import { useOptimistic } from 'react';

import { saveTodo, getTodos } from './todos.js';
import { useState } from 'react';

function SubmitButton() {
 // same code as before, hence omitted
}

function App() {

Chapter 9 229

 const loadedTodos = getTodos(); // initial fetch
 const [todos, setTodos] = useState(loadedTodos);

 const [optimisticTodos, addOptimisticTodo] = useOptimistic(
 todos,
 (currentState, optimisticValue) => {
 return [...currentState, { ...optimisticValue, id: 'temp' }];
 }
);

 async function storeTodoAction(formData) {
 const todo = { title: formData.get('title') };
 addOptimisticTodo(todo);
 const updatedTodos = await saveTodo(todo);
 setTodos(updatedTodos);
 }

 return (
 <form action={storeTodoAction}>
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 <p className="actions">
 <SubmitButton />
 </p>
 </form>
 <div id="todos">
 <h2>My Todos</h2>
 {optimisticTodos.length === 0 && <p>No todos found.</p>}
 {optimisticTodos.length > 0 && (

 {optimisticTodos.map((todo) => (
 <li key={todo.id}>{todo.title}
))}

)}
 </div>
);
}

Handling User Input & Forms with Form Actions230

As you can see in this example, the optimisticTodos state is now used in the JSX code. The value stored
in that constant is either the normal todos state (managed by useState()), if the storeTodoAction()
form action is not executing, or it’s the array derived by the function passed to useOptimistic() (as
the second argument).

Figure 9.5: With useOptimistic(), the UI updates right away after submission

Using the useOptimistic() Hook can, therefore, help with building a great user experience where
your application provides instant feedback, even if some slow processes might still be running in the
background. Since the temporary optimistic state will always be replaced with the regular state (i.e.,
the todos state) once the form submission is done, there also is no risk of displaying an incorrect UI.
If an operation fails, React will automatically replace the temporarily incorrect UI with the correct
one when it falls back to using the regular state.

Summary and Key Takeaways
•	 Form submissions can be handled by manually listening to the submit event via the onSubmit

prop.
•	 Alternatively, form actions can be used—i.e., functions bound to the action prop of a <form>

element.
•	 When handling form submission manually (via onSubmit), you can extract form field values

with the help of state (useState()), Refs (useRef()), or by creating a FormData object from
event.currentTarget.

•	 When using form actions, a form data object with the form field input values is automatically
passed to the action function as a parameter.

•	 The useActionState() Hook can be utilized to manage form-dependent state (e.g., validation
error messages).

•	 useActionState() also provides a pending boolean value that may be used to update the UI
while the form action is processing.

•	 In nested components (nested within <form>), the useFormStatus() Hook can be called to get
and use information about the parent form submission status.

Chapter 9 231

•	 To provide quick UI updates, even when dealing with slow background processes (e.g., slow
HTTP requests), the useOptimistic() Hook may help.

What’s Next?
Dealing with forms and handling user input is a very common task in most web applications. React
apps are, of course, no exception.

That’s why React offers a broad variety of approaches and possible patterns you can use to handle form
submissions and extract user input. This chapter explored and compared the two main ways of doing
this: using the onSubmit prop or relying on form actions (only available since React 19).

As explained and shown throughout this chapter, both approaches are valid and have their use cases.
Personal preference as well as application requirements matter and will influence your decision.

At this point in the book, you know all the key React concepts you need to build feature-rich web appli-
cations. The next chapter will look behind the scenes of React and explore how it works internally. You
will also learn about some common optimization techniques that can make your apps more performant.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/09-form-actions/exercises/questions-
answers.md:

1.	 What’s a “form action”?
2.	 How can you access user input inside of a form action?
3.	 What’s the purpose of the useActionState() Hook and how is it used?
4.	 What’s the purpose of the useFormStatus() Hook and how is it used?
5.	 What’s the difference between useActionState() and useFormStatus()?
6.	 What’s the purpose of the useOptimistic() Hook and how is it used?

Apply What You Learned
With form actions in your React toolbelt, you have another powerful way of handling form submissions
and extracting user input.

In the following section, you’ll find an activity that allows you to practice working with form actions
and the form-related Hooks provided by React. As always, you will also need to employ some of the
concepts covered in earlier chapters (such as working with state or outputting lists).

Activity 9.1: Managing a Feedback Form
In this activity, your job is to build upon an existing, basic feedback form application and handle form
submissions, with the help of form actions. As part of this activity, you should validate the submitted
title and feedback text and show error messages if empty values are submitted. You should also up-
date the list of submitted feedback items optimistically and disable the submit button while the form
action is underway.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/09-form-actions/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/09-form-actions/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/09-form-actions/exercises/questions-answers.md

Handling User Input & Forms with Form Actions232

After downloading the code and running npm install in the project folder to install all required
dependencies, the solution steps are as follows:

1.	 Replace the existing onSubmit handler function with a form action—clean up and remove any
code that’s not needed anymore thereafter.

2.	 Disable the form submit button while the form action is processing.
3.	 Validate the user input and output any error messages with the help of the useActionState()

Hook.
4.	 Update the list of submitted feedback items optimistically by utilizing the useOptimistic()

Hook.

The expected result should resemble the following screenshots:

Figure 9.6: During form submission, the button is disabled, but the submitted item shows up instantly

Note

You can find the starting code for this activity at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/09-form-actions/activities/practice-1-
start. When downloading this code, you’ll always download the entire repository. Make
sure to then navigate to the subfolder with the starting code (activities/practice-1-
start, in this case) to use the right code snapshot.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/activities/practice-1-start

Chapter 9 233

Figure 9.7: When submitting invalid values, appropriate error messages are shown

Note

You can find a full example solution here: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/09-form-actions/activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/09-form-actions/activities/practice-1

10
Behind the Scenes of React and
Optimization Opportunities

Introduction
Using all the features covered up to this point, you can build non-trivial React apps and therefore
highly interactive and reactive UIs.

This chapter, while introducing some new functions and concepts, will not provide you with tools that
will enable you to build even more advanced web apps. You will not learn about groundbreaking, key
concepts such as state or props (though you will learn about more advanced concepts in later chapters).

Instead, this chapter allows you to look behind the scenes of React. You will learn how React calculates
required DOM updates, and how it ensures that such updates happen without impacting performance
in an unacceptable way. You will also learn about some other optimization techniques employed by
React—all with the goal of ensuring that your React app runs as smoothly as possible.

Besides this look behind the scenes, you will learn about various built-in functions and concepts that
can be used to further optimize app performance. This chapter will not only introduce those concepts
but also explain why they exist, how they should be used, and when to use which feature.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Avoid unnecessary code execution via the useMemo() and useCallback() Hooks
•	 Load optional code lazily, only when it’s needed, via React’s lazy() function
•	 Use React’s developer tools to analyze and optimize your app
•	 Explore the React Compiler for automatic performance improvements

Behind the Scenes of React and Optimization Opportunities236

Revisiting Component Evaluations and Updates
Before exploring React’s internal workings, it makes sense to briefly revisit React’s logic for executing
component functions.

Component functions are executed whenever some state (managed via useState()) changes or their
parent component function is executed again. The latter happens because, if a parent component
function is called, its entire JSX code (which points at the child component function) is re-evaluated.
Any component functions referenced in that JSX code are therefore also invoked again.

Consider a component structure like this:

function NestedChild() {
 console.log('<NestedChild /> is called.');

 return (
 <p id="nested-child">
 A component, deeply nested into the component tree.
 </p>
);
}

function Child() {
 console.log('<Child /> is called.');

 return (
 <div id="child">
 <p>
 A component, rendered inside another component,
 containing yet another component.
 </p>
 <NestedChild />
 </div>
);
}

function Parent() {
 console.log('<Parent /> is called.');

 const [counter, setCounter] = useState(0);

 function handleIncCounter() {
 setCounter((prevCounter) => prevCounter + 1);

Chapter 10 237

 }

 return (
 <div id="parent">
 <p>
 A component, nested into App,
 containing another component (Child).
 </p>
 <p>Counter: {counter}</p>
 <button onClick={handleIncCounter}>Increment</button>
 <Child />
 </div>
);
}

In this example structure, the Parent component renders a <div> with two paragraphs, a button, and
another component: the Child component. That component in turn outputs a <div> with a paragraph
and yet another component: the NestedChild component (which then only outputs a paragraph).

The Parent component also manages some state (a dummy counter), which is changed whenever the
button is clicked. All three components print a message via console.log(), simply to make it easy to
spot when each component is called by React.

The following screenshot shows those components in action—after the button was clicked:

Figure 10.1: Each component function is executed

Behind the Scenes of React and Optimization Opportunities238

In this screenshot, you can not only see how the components are nested into each other but also how
they are all invoked by React when the Increment button is clicked. Child and NestedChild are in-
voked even though they don’t manage or use any state. But since they are a child (Child) or descendent
(NestedChild) of the Parent component, which did receive a state change, the nested component
functions are called as well.

Understanding this flow of component function execution is important because this flow implies that
any component function invocation also influences its descendent components. It also shows you how
frequently component functions may be invoked by React and how many component functions may
be affected by a single state change.

Therefore, there’s one important question that should be answered: what happens to the actual page
DOM (i.e., to the loaded and rendered website in the browser) when one or more component functions
are invoked? Is the DOM recreated? Is the rendered UI updated?

What Happens When a Component Function Is Called
Whenever a component function is executed, React evaluates whether or not the rendered UI (i.e.,
the DOM of the loaded page) must be updated.

This is important: React evaluates whether an update is needed. It’s not forcing an update automatically!

Internally, React does not take the JSX code returned by a component (or multiple components) and
replace the page DOM with it.

That could be done, but it would mean that every component function execution would lead to some
form of DOM manipulation—even if it’s just a replacement of the old DOM content with a new, similar
version. In the example shown above, the Child and NestedChild JSX code would be used to replace
the currently rendered DOM every time those component functions were executed.

As you can see in the example above, those component functions are executed quite frequently. But
the returned JSX code is always the same because it’s static. It does not contain any dynamic values
(e.g., state or props).

If the actual page DOM were replaced with the DOM elements implied by the returned JSX code, the
visual result would always be the same. But there still would be some DOM manipulation behind
the scenes. And that’s a problem because manipulating the DOM is quite a performance-intensive
task—especially when done with a high frequency. Removing and adding or updating DOM elements
should therefore only be done when needed—not unnecessarily.

Because of this, React does not throw away the current DOM and replace it with the new DOM (im-
plied by the JSX code) just because a component function was executed. Instead, React first checks
whether an update is needed. And if it’s needed, only the parts of the DOM that need to change are
replaced or updated.

To determine whether an update is needed (and where), React uses a concept called the virtual DOM.

Chapter 10 239

The Virtual DOM vs the Real DOM
To determine whether (and where) a DOM update might be needed, React (specifically, the react-dom
package) compares the current DOM structure to the structure implied by the JSX code returned by
the executed component functions. If there’s a difference, the DOM is updated accordingly; otherwise,
it’s left untouched.

However, just as manipulating the DOM is relatively performance-intensive, reading the DOM is as
well. Even without changing anything in the DOM, reaching out to it, traversing the DOM elements,
and deriving the structure from it is something you typically want to reduce to a minimum.

If multiple component functions are executed and each triggers a process where the rendered DOM
elements are read and compared to the JSX structure implied by the invoked component functions,
the rendered DOM will be hit with read operations multiple times within a very short time frame.

For bigger React apps that are made up of dozens, hundreds, or even thousands of components, it’s
highly probable that dozens of component function executions might occur within a single second.
If that were to lead to the same amount of DOM read operations, there’s a quite high chance that the
web app would feel slow or laggy to the user.

That’s why React does not use the real DOM to determine whether any UI updates are needed. Instead,
it constructs and manages a virtual DOM internally—an in-memory representation of the DOM that’s
rendered in the browser. The virtual DOM is not a browser feature, but a React feature. You can think
of it as a deeply nested JavaScript object that reflects the components of your web app, including all
the built-in HTML components such as <div>, <p>, etc. (that is, the actual HTML elements that should
show up on the page in the end).

Figure 10.2: React manages a virtual representation of the expected element structure

Behind the Scenes of React and Optimization Opportunities240

In the figure above, you can see that the expected element structure (in other words, the expected
final DOM) is actually stored as a JavaScript object (or an array with a list of objects). This is the virtual
DOM, which is managed by React and used for identifying required DOM updates.

React manages this virtual DOM because comparing this virtual DOM to the expected UI state is much
less performance-intensive than reaching out to the real DOM.

Whenever a component function is called, React compares the returned JSX code to the respective
virtual DOM nodes stored in the virtual DOM. If differences are detected, React will determine which
changes are needed to update the DOM. Once the required adjustments are derived, these changes
are applied to both the virtual and the real DOM. This ensures that the real DOM reflects the expected
UI state without having to reach out to it or update it all the time.

Figure 10.3: React detects required updates via the virtual DOM

In the figure above, you can see how React compares the current DOM and the expected structure with
the help of the virtual DOM first, before reaching out to the real DOM to manipulate it accordingly.

Note

Please note that the actual structure of the virtual DOM is more complex than the structure
shown in the image. The chart above aims to give you an idea of what the virtual DOM
is and how it might look. It’s not an exact technical representation of the JavaScript data
structure managed by React.

Chapter 10 241

As a React developer, you don’t need to actively interact with the virtual DOM. Technically, you don’t
even need to know that it exists and that React uses it internally. But it’s always helpful to understand
the tool (React, in this case) you’re working with. It’s good to know that React does various performance
optimizations for you and that you get those on top of the many other features that make your life as
a developer (hopefully) easier.

State Batching
Since React uses the concept of a virtual DOM, frequent component function executions aren’t a huge
problem. But of course, even if comparisons are only conducted virtually, there is still some internal
code that must be executed. Even with the virtual DOM, performance could degrade if lots of unnec-
essary (and at the same time quite complex) virtual DOM comparisons must be made.

One scenario where unnecessary comparisons are performed is in the execution of multiple sequential
state updates. Since each state update causes the component function to be executed again (as well as
all potential nested components), multiple state updates that are performed together (for example, in
the same event handler function) will cause multiple component function invocations.

Consider this example:

function App() {
 const [counter, setCounter] = useState(0);
 const [showCounter, setShowCounter] = useState(false);

 function handleIncCounter() {
 setCounter((prevCounter) => prevCounter + 1);
 setShowCounter(true);
 }

 return (
 <>
 <p>Click to increment + show or hide the counter</p>
 <button onClick={handleIncCounter}>Increment</button>
 {showCounter && <p>Counter: {counter}</p>}
 </>
);
}

This component contains two state values: counter and showCounter. When the button is clicked,
the counter is incremented by 1. In addition, showCounter is set to true. Therefore, the first time the
button is clicked, both the counter and the showCounter states are changed (because showCounter
is false initially).

Since two state values are changed, the expectation would be that the App component function is
called twice by React—because every state update causes the connected component function to be
invoked again.

Behind the Scenes of React and Optimization Opportunities242

However, if you add a console.log() statement to the App component function (to track how often
it’s executed), you will see that it’s only invoked once, when the Increment button is clicked:

Figure 10.4: Only one console log message is displayed

This behavior is called state batching. React performs state batching when multiple state updates
are initiated from the same place in your code (e.g., from inside the same event handler function).

It’s a built-in functionality that ensures that your component functions are not called more often than
needed. This prevents unnecessary virtual DOM comparisons.

State batching is a very useful mechanism. But there is another kind of unnecessary component
evaluation that it does not prevent: child component functions that get executed when the parent
component function is called.

Avoiding Unnecessary Child Component Evaluations
Whenever a component function is invoked (because its state changed, for example), any nested com-
ponent functions will be called as well. See the first section of this chapter for more details.

As you saw in the example in the first section of this chapter, it is often the case that those nested compo-
nents don’t actually need to be evaluated again. They might not depend on the state value that changed
in the parent component. They might not even depend on any values of the parent component at all.

Here’s an example where the parent component function contains some state that is not used by the
child component:

function Error({ message }) {

Note

If you see two log messages instead of one, make sure you’re not using React’s “Strict Mode.”
When running in Strict Mode during development, React executes component functions
more often than it normally would.

If necessary, you can disable Strict Mode by removing the <React.StrictMode> compo-
nent from your main.jsx file. You will learn more about React’s Strict Mode toward the
end of this chapter.

Chapter 10 243

 if (!message) {
 return null;
 }

 return <p className={classes.error}>{message}</p>;
}

function Form() {
 const [enteredEmail, setEnteredEmail] = useState('');
 const [errorMessage, setErrorMessage] = useState();

 function handleUpdateEmail(event) {
 setEnteredEmail(event.target.value);
 }

 function handleSubmit(event) {
 event.preventDefault();
 if (!enteredEmail.endsWith('.com')) {
 setErrorMessage('Email must end with .com.');
 }
 }

 return (
 <form className={classes.form} onSubmit={handleSubmit}>
 <div className={classes.control}>
 <label htmlFor="email">Email</label>
 <input
 id="email"
 type="email"
 value={enteredEmail}
 onChange={handleUpdateEmail}
 />
 </div>
 <Error message={errorMessage} />
 <button>Sign Up</button>
 </form>
);
}

Behind the Scenes of React and Optimization Opportunities244

In this example, the Error component relies on the message prop, which is set to the value stored
in the errorMessage state of the Form component. However, the Form component also manages an
enteredEmail state, which is not used (not received via props) by the Error component. Therefore,
changes to the enteredEmail state will cause the Error component to be executed again, despite the
component not needing that value.

You can track the unnecessary Error component function invocations by adding a console.log()
statement to that component function:

function Error({ message }) {
 console.log('<Error /> component function is executed.');
 if (!message) {
 return null;
 }

 return <p className={classes.error}>{message}</p>;
}

Figure 10.5: The Error component function is executed for every keystroke

In the preceding screenshot, you can see that the Error component function is executed for every
keystroke on the input field (that is, once for every enteredEmail state change).

This is in line with what you have learned previously, but it is also unnecessary. The Error component
does depend on the errorMessage state and should certainly be re-evaluated whenever that state
changes, but executing the Error component function because the enteredEmail state value was
updated is clearly not required.

Note

You can find the complete example code on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/
examples/03-memo.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/examples/03-memo
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/examples/03-memo
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/examples/03-memo

Chapter 10 245

That’s why React offers another built-in function that you can use to control (and prevent) this behav-
ior: the memo() function.

memo is imported from react and is used like this:

import { memo } from 'react';

import classes from './Error.module.css';

function Error({ message }) {
 console.log('<Error /> component function is executed.');
 if (!message) {
 return null;
 }

 return <p className={classes.error}>{message}</p>;
}

export default memo(Error);

You wrap the component function that should be protected from unnecessary, parent-initiated re-eval-
uations with memo(). This causes React to check whether the component’s props did change, compared
to the last time the component function was called. If prop values are equal, React knows that the
component function does not need to be executed again.

By adding memo(), the unnecessary component function invocations are avoided, as shown below:

Figure 10.6: No console log messages appear

As you can see in the figure, no messages are printed to the console. This proves that unnecessary
component executions are avoided (remember: before adding memo(), many messages were printed
to the console).

Behind the Scenes of React and Optimization Opportunities246

memo() also takes an optional second argument that can be used to add your own logic to determine
whether prop values have changed or not. This can be useful if you’re dealing with more complex prop
values (e.g., objects or arrays) where custom comparison logic might be needed, as in the following
example:

memo(SomeComponent, function(prevProps, nextProps) {
 return prevProps.user.firstName !== nextProps.user.firstName;
});

The (optional) second argument passed to memo() must be a function that automatically receives the
previous props object and the next props object. The function then must return true if the component
(SomeComponent, in this example) should be re-evaluated and false if it should not.

Often, the second argument is not needed because the default behavior of memo() (where it compares
all props for inequality) is exactly what you need. But if more customization or control is needed,
memo() allows you to add your custom logic.

With memo() in your toolbox, it’s tempting to wrap every React component function with memo(). Why
wouldn’t you do it? After all, it avoids unnecessary component function executions.

You definitely can use it on all components—but it’s not necessarily helpful to do that because avoiding
unnecessary component re-evaluations by using memo() comes at a cost: comparing props (old ver-
sus new) also requires some code to run. It’s not “free.” It’s not a huge cost, though. Using memo() on
many (or all) components will likely not slow down your app significantly. But it’s still unnecessary if
you have components that do need to be re-evaluated a lot. Using memo() on components that receive
props that change a lot simply does not do anything useful.

Hence memo() makes the most sense if you have relatively simple props (i.e., props with no deeply
nested objects that you need to compare manually with a custom comparison function) and most
parent component state changes don’t affect those props of the child component. And even in those
cases, if you have a relatively simple component function (i.e., without any complex logic in it), using
memo() still might not yield any measurable benefit.

The example code above (the Error component) is a good example: in theory, using memo() makes
sense here. Most state changes in the parent component won’t affect Error, and the prop comparison
will be very simple because it’s just one prop (the message prop, which holds a string) that must be
compared. But despite that, using memo() to wrap Error will very likely not be worth it. Error is an
extremely basic component with no complex logic in it. It simply doesn’t matter if the component
function gets invoked frequently. Hence, using memo() in this spot would be absolutely fine—but so
is not using it.

A great spot to use memo(), on the other hand, is a component that’s relatively close to the top of the
component tree (or of a deeply nested branch of components in the component tree). If you are
able to avoid unnecessary executions of that one component via memo(), you’ll also implicitly avoid
unnecessary executions of all nested components beneath that one component. This is illustrated in
the diagram below:

Chapter 10 247

Figure 10.7: Using memo at the start of a component tree branch

In the preceding figure, memo() is used on the Shop component, which has multiple nested descen-
dent components. Without memo(), whenever the Shop component function gets invoked, Products,
ProdItem, Cart, etc. would also be executed. With memo(), assuming that it’s able to avoid some
unnecessary executions of the Shop component function, all those descendent components are no
longer evaluated.

Avoiding Costly Computations
The memo() function can help avoid unnecessary component function executions. As mentioned in
the previous section, this is especially valuable if a component function performs a lot of work (e.g.,
sorting a long list).

But as a React developer, you will also encounter situations in which you have a work-intensive com-
ponent that needs to be executed again because some prop value changed. In such cases, using memo()
won’t prevent the component function from executing again. However, the prop that changed might
not be needed for the performance-intensive task that is performed as part of the component.

Consider the following example:

function sortItems(items) {
 console.log('Sorting');
 return items.sort(function (a, b) {
 if (a.id > b.id) {
 return 1;
 } else if (a.id < b.id) {
 return -1;
 }

Behind the Scenes of React and Optimization Opportunities248

 return 0;
 });
}

function List({ items, maxNumber }) {
 const sortedItems = sortItems(items);

 const listItems = sortedItems.slice(0, maxNumber);

 return (

 {listItems.map((item) => (
 <li key={item.id}>
 {item.title} (ID: {item.id})

))}

);
}

export default List;

The List component receives two prop values: items and maxNumber. It then calls sortItems() to
sort the items by id. Thereafter, the sorted list is limited to a certain amount (maxNumber) of items.
As a last step, the sorted and shortened list is then rendered to the screen via map() in the JSX code.

Depending on the number of items passed to the List component, sorting it can take a significant
amount of time (for very long lists, even up to a few seconds). It’s definitely not an operation you want
to perform unnecessarily or too frequently. The list needs to be sorted whenever items changes, but
it should not be sorted if maxNumber changes—because this does not impact the items in the list (i.e.,
it doesn’t affect the order). But with the code snippet shared above, sortItems() will be executed
whenever either of the two prop values changes, no matter whether it’s items or maxNumber.

As a result, when running the app and changing the number of displayed items, you can see multiple
"Sorting" log messages—implying that sortItems() was executed every time the number of items
was changed.

Note

A full example app can be found on GitHub at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/10-behind-scenes/examples/04-usememo.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/examples/04-usememo
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/examples/04-usememo

Chapter 10 249

Figure 10.8: Multiple “Sorting” log messages appear in the console

The memo() function won’t help here because the List component function should (and will) execute
whenever items or maxNumber changes. memo() does not help control partial code execution inside
the component function.

For that, you can use another feature provided by React: the useMemo() Hook.

useMemo() can be used to wrap a compute-intensive operation. For it to work correctly, you also must
define a list of dependencies that should cause the operation to be executed again. To some extent,
it’s similar to useEffect() (which also wraps an operation and defines a list of dependencies), but the
key difference is that useMemo() runs at the same time as the rest of the code in the component func-
tion, whereas useEffect() executes the wrapped logic after the component function execution has
finished. useEffect() should not be used for optimizing compute-intensive tasks but for side effects.

useMemo(), on the other hand, exists to control the execution of performance-intensive tasks. Applied
to the example mentioned above, the code can be adjusted like this:

import { useMemo } from 'react';

function List({ items, maxNumber }) {
 const sortedItems = useMemo(
 function() {
 console.log('Sorting');
 return items.sort(function (a, b) {
 if (a.id > b.id) {
 return 1;
 } else if (a.id < b.id) {
 return -1;
 }
 return 0;
 });
 },
 [items]

Behind the Scenes of React and Optimization Opportunities250

);

 const listItems = sortedItems.slice(0, maxNumber);

 return (

 {listItems.map((item) => (
 <li key={item.id}>
 {item.title} (ID: {item.id})

))}

);
}

export default List;

useMemo() wraps an anonymous function (the function that previously existed as a named function,
sortItems), which contains the entire sorting code. The second argument passed to useMemo() is the
array of dependencies for which the function should be executed again (when a dependency value
changes). In this case, items is the only dependency of the wrapped function, and so that value is
added to the array.

With useMemo() used like this, the sorting logic will only execute when items change, not when
maxNumber (or anything else) changes. As a result, you see "Sorting" being output in the developer
tools console only once:

Figure 10.9: Only one “Sorting” output in the console

useMemo() can be very useful for controlling code execution inside of your component functions. It
can be a great addition to memo() (which controls the overall component function execution). But, also
like memo(), you should not start wrapping all your logic with useMemo(). Only use it for very perfor-
mance-intensive computations since checking for dependency changes and storing and retrieving
past computation results (which useMemo() does internally) also comes at a performance cost.

Chapter 10 251

Utilizing useCallback()
In the previous chapters, you learned about useCallback(). Just like useMemo() can be used for

“expensive” calculations, useCallback() can be used to prevent unnecessary function re-creations.
In the context of this chapter, useCallback() can be helpful because, in conjunction with memo() or
useMemo(), it can help you avoid unnecessary code execution. It can help you in cases where a function
is passed as a prop (i.e., where you might use memo()) or is used as a dependency in some “expensive”
computation (i.e., possibly solved via useMemo()).

Here’s an example where useCallback() can be combined with memo() to prevent unnecessary com-
ponent function executions:

import { memo } from 'react';

import classes from './Error.module.css';

function Error({ message, onClearError }) {
 console.log('<Error /> component function is executed.');
 if (!message) {
 return null;
 }

 return (
 <div className={classes.error}>
 <p>{message}</p>
 <button className={classes.errorBtn} onClick={onClearError}>X</button>
 </div>
);
}

export default memo(Error);

The Error component is wrapped with the memo() function and so will only execute if one of the
received prop values changes.

The Error component is used by another component, the Form component, like this:

function Form() {
 const [enteredEmail, setEnteredEmail] = useState('');
 const [errorMessage, setErrorMessage] = useState();

 function handleUpdateEmail(event) {
 setEnteredEmail(event.target.value);
 }

Behind the Scenes of React and Optimization Opportunities252

 function handleSubmit(event) {
 event.preventDefault();
 if (!enteredEmail.endsWith('.com')) {
 setErrorMessage('Email must end with .com.');
 }
 }

 function handleClearError() {
 setErrorMessage(null);
 }

 return (
 <form className={classes.form} onSubmit={handleSubmit}>
 <div className={classes.control}>
 <label htmlFor="email">Email</label>
 <input
 id="email"
 type="email"
 value={enteredEmail}
 onChange={handleUpdateEmail}
 />
 </div>
 <Error message={errorMessage} onClearError={handleClearError} />
 <button>Sign Up</button>
 </form>
);
}

In this component, the Error component receives a pointer to the handleClearError function (as a
value for the onClearError prop). You might recall a very similar example from earlier in this chapter
(from the Avoiding Unnecessary Child Component Evaluations section). There, memo() was used to ensure
that the Error component function was not invoked when enteredEmail changed (because its value
was not used in the Error component function at all).

Now, with the adjusted example and the handleClearError function pointer passed to Error, memo()
unfortunately isn’t preventing component function executions anymore. Why? Because functions are
objects in JavaScript and the handleClearError function is recreated every time the Form component
function is executed (which happens on every state change, including changes to the enteredEmail
state).

Chapter 10 253

Since a new function object is created for every state change, handleClearError is technically a dif-
ferent value for every execution of the Form component. Therefore, the Error component receives a
new onClearError prop value whenever the Form component function is invoked. To memo(), the old
and new handleClearError function objects are different from each other, and it therefore will not
stop the Error component function from running again.

That’s exactly where useCallback() can help:

const handleClearError = useCallback(() => {
 setErrorMessage(null);
}, []);

By wrapping handleClearError with useCallback(), the re-creation of the function is prevented, and
so no new function object is passed to the Error component. Hence, memo() is able to detect equality
between the old and new onClearError prop value and prevents unnecessary function component
executions again.

Similarly, useCallback() can be used in conjunction with useMemo(). If the compute-intensive opera-
tion wrapped with useMemo() uses a function as a dependency, you can use useCallback() to ensure
that this dependent function is not recreated unnecessarily.

Using the React Compiler
Considering and using memo(), useMemo(), and useCallback() to prevent unnecessary component
re-evaluations can be a chore. Even though performance optimization is important, as a React devel-
oper, you typically want to focus on building great UIs and implementing helpful features in them.

That’s why the React team developed a compiler that aims to optimize code for you – a standalone tool
that can be added to React projects that will automatically wrap your components with memo(), use
useMemo() when needed, and wrap functions with useCallback().

Therefore, when using this compiler, you don’t have to think about or use these optimization functions
and Hooks anymore.

In other words, the React compiler will optimize your code for you. At least, that’s the theory.

However, at the time of writing, this compiler is only available in experimental mode. This means
that you shouldn’t use it for production and that there may be bugs or suboptimal compilation results.

Nonetheless, you can give it a try when working on a project that uses React 19 or higher (the compiler
won’t work with older React versions).

Adding the compiler to a project is easy since it’s just an extra dependency that must be installed in
your project:

npm install babel-plugin-react-compiler

Behind the Scenes of React and Optimization Opportunities254

With the compiler plugin installed, you must adjust your build process configuration such that the
compiler is used. When working on a Vite-based project, you just have to edit the vite.config.js file,
which should exist in your root project folder:

// vite.config.js
const ReactCompilerConfig = { /* ... */ };

export default defineConfig(() => {
 return {
 plugins: [
 react({
 babel: {
 plugins: [
 ["babel-plugin-react-compiler", ReactCompilerConfig],
],
 },
 }),
],
 // ...
 };
});

If you’re using another project setup, you can follow the installation instructions on the official com-
piler documentation page.

With the compiler installed, it will automatically be executed to analyze and adjust your code to in-
clude optimizations like memo() or useMemo(). Keep in mind that those optimizations are performed
as part of the build process that’s invoked by running npm run dev or npm run build. Therefore, your
original source code will not change—instead, the compiler optimizes your code “behind the scenes.”

Once the React compiler is stable, it will very likely be a standard tool that’s part of every React proj-
ect’s build process. Therefore, you won’t have to use memo(), useMemo(), or useCallback() manually
in your code anymore. But until that’s the case, or in React projects that can’t use the compiler, you’ll
still have to optimize the code manually.

Note

Since the compiler is not stable yet, it’s possible that installation steps and usage instruc-
tions will change over time.

Therefore, you should visit the official React compiler documentation page for the latest
details and instructions: https://react.dev/learn/react-compiler.

https://react.dev/learn/react-compiler

Chapter 10 255

Avoiding Unnecessary Code Download
Thus far, this chapter has mostly discussed strategies for avoiding unnecessary code execution. But
it’s not just the execution of code that can be an issue. It’s also not great if your website visitors have
to download lots of code that might never be executed at all. Because every kilobyte of JavaScript
code that has to be downloaded will slow down the initial loading time of your web page—not just
because of the time it takes to download the code bundle (which can be significant, if users are on a
slow network and code bundles are big) but also because the browser has to parse all the downloaded
code before your page becomes interactive.

For this reason, a lot of community and ecosystem effort is spent on reducing JavaScript code bundle
sizes. Minification (automatic shortening of variable names and other measures to reduce the final
code) and compression can help a lot and is therefore a common technique. Actually, projects cre-
ated with Vite already come with a build workflow (initiated by running npm run build), which will
produce a production-optimized code bundle that is as small as possible.

But there also are steps that can be taken by you, the developer, to reduce the overall code bundle size:

1.	 Try to write short and concise code.
2.	 Be thoughtful about including third-party libraries and don’t use them unless you really need to.
3.	 Consider using code-splitting techniques.

The first point should be fairly obvious. If you write less code, your website visitors have less code to
download. Therefore, trying to be concise and write optimized code makes sense.

The second point should also make sense. For some tasks, you will actually save code by including
third-party libraries that may be much more elaborate than the code solution you might come up
with. But there are also situations and tasks in which you might get away with writing your own code
or using some built-in function instead of including a third-party library. You should at least always
think about this alternative and only include third-party libraries you absolutely need.

The last point is something React can help with.

Reducing Bundle Sizes via Code Splitting (Lazy Loading)
React exposes a lazy() function that can be used to load component code conditionally—meaning
only when it’s actually needed (instead of upfront).

Consider the following example, consisting of two components working together.

A DateCalculator component is defined like this:

import { useState } from 'react';
import { add, differenceInDays, format, parseISO } from 'date-fns';

import classes from './DateCalculator.module.css';

const initialStartDate = new Date();

Behind the Scenes of React and Optimization Opportunities256

const initialEndDate = add(initialStartDate, { days: 1 });

function DateCalculator() {
 const [startDate, setStartDate] = useState(
 format(initialStartDate, 'yyyy-MM-dd')
);
 const [endDate, setEndDate] = useState(
 format(initialEndDate, 'yyyy-MM-dd')
);

 const daysDiff = differenceInDays(
 parseISO(endDate),
 parseISO(startDate)
);

 function handleUpdateStartDate(event) {
 setStartDate(event.target.value);
 }

 function handleUpdateEndDate(event) {
 setEndDate(event.target.value);
 }

 return (
 <div className={classes.calculator}>
 <p>Calculate the difference (in days) between two dates.</p>
 <div className={classes.control}>
 <label htmlFor="start">Start Date</label>
 <input
 id="start"
 type="date"
 value={startDate}
 onChange={handleUpdateStartDate}
 />
 </div>
 <div className={classes.control}>
 <label htmlFor="end">End Date</label>
 <input
 id="end"
 type="date"
 value={endDate}

Chapter 10 257

 onChange={handleUpdateEndDate}
 />
 </div>
 <p className={classes.difference}>
 Difference: {daysDiff} days
 </p>
 </div>
);
}

export default DateCalculator;

This DateCalculator component is then rendered conditionally by the App component:

import { useState } from 'react';

import DateCalculator from './components/DateCalculator.jsx';

function App() {
 const [showDateCalc, setShowDateCalc] = useState(false);

 function handleOpenDateCalc() {
 setShowDateCalc(true);
 }

 return (
 <>
 <p>This app might be doing all kinds of things.</p>
 <p>
 But you can also open a calculator which calculates
 the difference between two dates.
 </p>
 <button onClick={handleOpenDateCalc}>Open Calculator</button>
 {showDateCalc && <DateCalculator />}
 </>
);
}

export default App;

In this example, the DateCalculator component uses a third-party library (the date-fns library) to
access various date-related utility functions (for example, a function for calculating the difference
between two dates, or differenceInDays).

Behind the Scenes of React and Optimization Opportunities258

The component then accepts two date values and calculates the difference between those dates in
days—though the actual logic of the component isn’t too important here. What is important is the fact
that a third-party library and various utility functions are used. This adds quite a bit of JavaScript code
to the overall code bundle, and all that code must be downloaded when the entire website is loaded
for the first time, even though the date calculator isn’t even visible at that point in time (because it is
rendered conditionally).

After building the app for production (via npm run build), when previewing that production version
(via npm run preview), you can see one main code bundle file being downloaded in the following
screenshot:

Figure 10.10: One main bundle file is downloaded

The Network tab in the browser’s developer tools reveals outgoing network requests. As you can see
in the screenshot, one main JavaScript bundle file is downloaded. You won’t see any extra requests
being sent when the button is clicked. This implies that all the code, including the code needed for
DateCalculator, was downloaded upfront.

That’s where code splitting with React’s lazy() function becomes useful.

This function can be wrapped around a dynamic import to load the imported component only once
it’s needed.

Note

Dynamic imports are a native JavaScript feature that allows for dynamically importing
JavaScript code files. For further information on this topic, visit https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import

Chapter 10 259

In the preceding example, it would be used like this in the App component file:

import { lazy, useState } from 'react';

const DateCalculator = lazy(() => import(
 './components/DateCalculator.jsx'
)
);

function App() {
 const [showDateCalc, setShowDateCalc] = useState(false);

 function handleOpenDateCalc() {
 setShowDateCalc(true);
 }

 return (
 <>
 <p>This app might be doing all kinds of things.</p>
 <p>
 But you can also open a calculator which calculates
 the difference between two dates.
 </p>
 <button onClick={handleOpenDateCalc}>Open Calculator</button>
 {showDateCalc && <DateCalculator />}
 </>
);
}

export default App;

This alone won’t do the trick though. You must also wrap the conditional JSX code, where the dynam-
ically imported component is used, with another component provided by React – the <Suspense>
component – like this:

import { lazy, Suspense, useState } from 'react';

const DateCalculator = lazy(() => import(
 './components/DateCalculator.jsx'
)
);

function App() {

Behind the Scenes of React and Optimization Opportunities260

 const [showDateCalc, setShowDateCalc] = useState(false);

 function handleOpenDateCalc() {
 setShowDateCalc(true);
 }

 return (
 <>
 <p>This app might be doing all kinds of things.</p>
 <p>
 But you can also open a calculator which calculates
 the difference between two dates.
 </p>
 <button onClick={handleOpenDateCalc}>Open Calculator</button>
 <Suspense fallback={<p>Loading...</p>}>
 {showDateCalc && <DateCalculator />}
 </Suspense>
 </>
);
}

export default App;

Suspense is a component built into React that aims to display fallback content while some resource
or data is loading. Therefore, when using it for lazy loading, you must wrap it around any conditional
code that uses React’s lazy() function. Suspense also has one mandatory prop that must be provid-
ed, the fallback prop, which expects a JSX value that will be rendered as fallback content until the
dynamically loaded content is available.

lazy() leads to the overall JavaScript code being split up into multiple bundles. The bundle that con-
tains the DateCalculator component (and its dependencies, such as the date-fns library code) is
only downloaded when it’s needed—that is, when the button in the App component is clicked. If that
download were to take a bit longer, the fallback content of Suspense would be shown on the screen
in the meantime.

Note

You can find the finished example code on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/
examples/06-code-splitting.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/examples/06-code-splitting
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/examples/06-code-splitting
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/examples/06-code-splitting

Chapter 10 261

After adding lazy() and the Suspense component as described, a smaller bundle is initially down-
loaded. In addition, if the button is clicked, more code files are downloaded:

Figure 10.11: After clicking the button, an extra code file is downloaded

Just as with all the other optimization techniques described thus far, the lazy() function is not a func-
tion you should start wrapping around all your imports. If an imported component is very small and
simple (and doesn’t use any third-party code), splitting the code isn’t really worth it, especially since
you have to consider that the additional HTTP request required for downloading the extra bundle
also comes with some overhead.

It also doesn’t make sense to use lazy() on components that will be loaded initially anyway. Only
consider using it on conditionally loaded components.

Strict Mode
Throughout this chapter, you have learned a lot about React’s internals and various optimization
techniques. Not really an optimization technique, but still related, is another feature offered by React,
called Strict Mode.

Note

React’s Suspense component is not limited to being used in conjunction with the lazy()
function. Chapter 14, Managing Data with React Router, and Chapter 17, Understanding
React Suspense & The use() Hook, will explore how the Suspense component may be used
to show fallback content while fetching data.

Behind the Scenes of React and Optimization Opportunities262

You may have stumbled across code like this before:

import React from 'react';

// ... other code ...
root.render(<React.StrictMode><App /></React.StrictMode >);

<React.StrictMode> is another built-in component provided by React. It doesn’t render a visual ele-
ment, but it will enable some extra checks that are performed behind the scenes by React.

Most checks are related to identifying the use of unsafe or legacy code (i.e., features that will be re-
moved in the future). But there are also some checks that aim to help you identify potential problems
with your code.

For example, when using Strict Mode, React will execute component functions twice and also unmount
and remount every component whenever it mounts for the first time. This is done to ensure that you’re
managing your state and side effects in a consistent and correct way (for example, that you do have
cleanup functions in your effect functions).

Building React apps with Strict Mode enabled can sometimes lead to confusion or annoying error
messages. You might, for example, wonder why your component effects are executing too often.

Therefore, it’s your personal decision whether you want to use Strict Mode or not. Enabling it can help
you catch and fix errors early though.

Debugging Code and the React Developer Tools
Earlier in this chapter, you learned that component functions may execute quite frequently and that
you can prevent unnecessary executions using memo() and useMemo() (and that you shouldn’t always
prevent them).

Identifying component executions by adding console.log() inside the component functions is one
way of gaining insight into a component. It’s the approach used throughout this chapter. However,
for large React apps with dozens, hundreds, or even thousands of components, using console.log()
can get tedious.

That’s why the React team also built an official tool to help with gaining app insights. React Developer
Tools is an extension that can be installed on all major browsers (Chrome, Firefox, and Edge). You can
find and install the extension by simply searching the web for "<your browser> react developer
tools" (e.g., chrome react developer tools).

Note

Strict Mode only affects your app and its behavior during development. It does not influ-
ence your app once you build it for production. Extra checks of effects such as double
component function execution will not be performed in production.

Chapter 10 263

Once you have installed the extension, you can access it directly from inside the browser. For example,
when using Chrome, you can access the React Developer Tools extension directly from inside Chrome’s
developer tools (which can be opened via the menu in Chrome). Explore the specific extension doc-
umentation (in your browser’s extensions store) for details on how to access it.

The React Developer Tools extension offers two areas: a Components page and a Profile page:

Figure 10.12: React Developer Tools can be accessed via browser developer tools

The Components page can be used to analyze the component structure of the currently rendered page.
You can use this page to understand the structure of your components (i.e., the “tree of components”),
how components are nested into each other, and even the configuration (props, state) of components.

Figure 10.13: Component relations and data are shown

Behind the Scenes of React and Optimization Opportunities264

This page can be very useful when attempting to understand the current state of a component, how
a component is related to other components, and which other components may therefore influence
a component (e.g., cause it to be re-evaluated).

However, in the context of this chapter, the more useful page is the Profiler page:

Figure 10.14: The Profiler page (without any data gathered)

On this page, you can begin recording component evaluations (i.e., component function executions).
You can do this by simply clicking the Record button in the top-left corner (the blue circle). This button
will then be replaced by a Stop button, which you can click to end the recording.

After recording the React app for a couple of seconds (and interacting with it during that period), an
example result could look like this:

Figure 10.15: The Profiler page shows various bars after recording has finished

This result consists of two main areas:

•	 A list of bars, indicating the number of component re-evaluations (every bar reflects one
re-evaluation cycle that affected one or more components). You can click these bars to explore
more details about a specific cycle.

Chapter 10 265

•	 For the selected evaluation cycle, a list of the affected components is presented. You can iden-
tify affected components easily as their bars are colored and timing information is displayed
for them.

You can select any render cycle from 1 (in this case, there are two for this recording session) to view
which components were affected. The bottom part of the window (2) shows all affected components
by highlighting them with some color and outputting the overall amount of time taken by the com-
ponents to be re-evaluated (for example, 0.1ms of 0.3ms).

On the right side of the window, you also learn more about this component evaluation cycle. For
example, you learn where it was triggered. In this case, it was triggered by the Form component (it’s
the same example as discussed earlier in this chapter, in the Avoiding Unnecessary Child Component
Evaluations section).

The Profiler page can therefore also help you to identify component evaluation cycles and determine
which components are affected. In this example, you can see a difference if the memo() function is
wrapped around the Error component:

Figure 10.16: Only the Form component is affected, not the Error component

After re-adding the memo() function as a wrapper around the Error component (as explained earlier
in this chapter), you can use the Profiler page of React Developer Tools to confirm that the Error
component is no longer unnecessarily evaluated. To do this, you should start a new recording session
and reproduce the situation, where previously, without memo(), the Error component would’ve been
called again.

The diagonal grayed-out lines across the Error component in the Profiler window signal that this
component was not affected by some other component function invocation.

React Developer Tools can therefore be used to gain deeper insights into your React app and your com-
ponents. You can use them in addition or instead of calling console.log() in a component function.

Note

It’s worth noting that this tool also proves that component evaluation is extremely fast—
0.1ms for re-evaluating a component is way too fast for any human to realize that some-
thing happened behind the scenes.

Behind the Scenes of React and Optimization Opportunities266

Summary and Key Takeaways
•	 React components are re-evaluated (executed) whenever their state changes or the parent

component is evaluated.
•	 React optimizes component evaluation by calculating required UI changes with the help of a

virtual DOM first.
•	 Multiple state updates that occur at the same time and in the same place are batched together

by React. This ensures that unnecessary component evaluations are avoided.
•	 The memo() function can be used to control component function executions.
•	 memo() looks for prop value differences (old props versus new props) to determine whether a

component function must be executed again.
•	 useMemo() can be used to wrap performance-intensive computations and only perform them

if key dependencies changed.
•	 Both memo() and useMemo() should be used carefully since they also come at a cost (the com-

parisons performed).
•	 When working with React 19 or higher, you can install and enable the (experimental) React

compiler to automatically optimize your code during the build process.
•	 The initial code download size can be reduced with the help of code splitting via the lazy()

function (in conjunction with the built-in Suspense component)
•	 React’s Strict Mode can be enabled (via the built-in <React.StrictMode> component) to per-

form various extra checks and detect potential bugs in your application.
•	 React Developer Tools can be used to gain deeper insights into your React app (for example,

component structure and re-evaluation cycles).

What’s Next?
As a developer, you should always know and understand the tool you’re working with—in this case, React.

This chapter allowed you to get a better idea of how React works under the hood and which optimi-
zations are implemented automatically. In addition, you also learned about various optimization
techniques that can be implemented by you.

The next chapter will go back to solving actual problems you might face when trying to build React
apps. Instead of optimizing React apps, you will learn more about techniques and features that can
be used to solve more complex problems related to component and application state management.

Chapter 10 267

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/10-behind-scenes/exercises/questions-
answers.md:

1.	 Why does React use a virtual DOM to detect required DOM updates?
2.	 How is the real DOM affected when a component function is executed?
3.	 Which components are great candidates for the memo() function? Which components are bad

candidates?
4.	 How is useMemo() different from memo()?
5.	 What’s the idea behind code splitting and the lazy() function?

Apply What You Learned
With your newly gained knowledge about React’s internals and some of the optimization techniques you
can employ in order to improve your apps, you can now apply this knowledge in the following activity.

Activity 10.1: Optimize an Existing App
In this activity, you’re handed an existing React app that could be optimized in various places. Your
task is to identify optimization opportunities and implement appropriate solutions. Keep in mind that
too much optimization can actually lead to a worse result.

Once you have downloaded the code and run npm install in the project folder (to install all required
dependencies), you can start the development server via npm run dev. As a result, upon visiting
localhost:5173, you should see the following UI:

Note

You can find the starting code for this activity at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/10-behind-scenes/activities/practice-1-
start. When downloading this code, you’ll always download the entire repository. Make
sure to then navigate to the subfolder with the starting code (activities/practice-1-
start in this case) to use the right code snapshot.

The provided project also uses many features covered in earlier chapters. Take the time
to analyze it and understand the provided code. This is a great practice and allows you to
see many key concepts in action.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/10-behind-scenes/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/10-behind-scenes/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/10-behind-scenes/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/activities/practice-1-start

Behind the Scenes of React and Optimization Opportunities268

Figure 10.17: The running starting project

Take your time to get acquainted with the provided project. Experiment with the different buttons in
the UI, fill in some dummy data in the form input fields, and analyze the provided code. Please note
that this dummy project does not send any HTTP requests to any server. All entered data is discarded
the moment it is entered.

To complete the activity, the solution steps are as follows:

1.	 Find optimization opportunities by looking for unnecessary component function executions.
2.	 Also, identify unnecessary code execution inside of component functions (where the overall

component function invocation can’t be prevented).
3.	 Determine which code could be loaded lazily instead of eagerly.
4.	 Use the memo() function, the useMemo() Hook, and React’s lazy() function to improve the code.

You can tell that you came up with a good solution and sensible adjustments if you can see extra code
fetching network requests (in the Network tab of your browser developer tools) for clicking on the
Reset password or Create a new account buttons:

Figure 10.18: In the final solution, some code is lazy loaded

Chapter 10 269

In addition, you should see no Validated password. console message when typing into the email
input fields (Email and Confirm Email) of the signup form (that is, the form you switch to when click-
ing Create a new account):

Figure 10.19: No “Validated password.” output in the console

You also shouldn’t get any console outputs when clicking the More Information button:

Figure 10.20: No console messages when clicking “More Information”

Note

All code files used for this activity, and the solution, can be found at https://github.
com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/
activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/10-behind-scenes/activities/practice-1

11
Working with Complex State

Introduction
State is one of the core concepts you must understand (and work with) to use React effectively. Ba-
sically, every React app utilizes (many) state values across many components to present a dynamic,
reactive user interface.

From simple state values that contain a changing counter or values entered by users, all the way up
to more complex state values such as the combination of multiple form inputs or user authentication
information, state is everywhere. In React apps, it’s typically managed with the help of the useState()
Hook.

However, once you start building more complex React applications (e.g., online shops, admin dash-
boards, and similar sites), it is likely that you’ll face various challenges related to state. State values
might be used in component A but changed in component B or be made up of multiple dynamic
values that may change for a broad variety of reasons (e.g., a cart in an online shop, which is a com-
bination of products, where every product has a quantity, a price, and possibly other traits that may
be changed individually).

You can handle all these problems with useState(), props, and the other concepts covered by this
book thus far. But you will notice that solutions based on useState() alone gain a complexity that
can be difficult to understand and maintain. That’s why React has more tools to offer—tools created
for these kinds of problems, which this chapter will highlight and discuss.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Manage cross-component or even app-wide state (instead of just component-spe-
cific state)

•	 Distribute data across multiple components
•	 Handle complex state values and changes

Working with Complex State272

A Problem with Cross-Component State
You don’t even need to build a highly sophisticated React app to encounter a common problem: state
that spans multiple components.

For example, you might be building a news app where users can bookmark certain articles. A simple
user interface could look like this:

Figure 11.1: An example user interface

As you can see in the preceding figure, the list of articles is on the left, and a summary of the book-
marked articles can be found in the sidebar on the right.

A common solution is to split this user interface into multiple components. The list of articles, specif-
ically, would probably be in its own component—just like the bookmark summary sidebar.

However, in that scenario, both components would need to access the same shared state—that is,
the list of bookmarked articles. The article list component would require access in order to add (or
remove) articles. The bookmark summary sidebar component would require it as it needs to display
the bookmarked articles.

The component tree and state usage for this kind of app could look like this:

Chapter 11 273

Figure 11.2: Two sibling components share the same state

In this figure, you can see that the state is shared across these two components. You also see that the
two components have a shared parent component (the News component, in this example).

Since the state is used by two components, you would not manage it in either of those components.
Instead, it’s lifted up, as described in Chapter 4, Working with Events and State (in the Lifting State Up
section). When lifting state up, the state values and pointers to the functions that manipulate the state
values are passed down to the actual components that need access via props.

This works and is a common pattern. You can (and should) keep on using it. But what if a component
that needs access to some shared state is deeply nested in other components? What if the app com-
ponent tree from the preceding example looked like this?

Figure 11.3: A component tree with multiple layers of state-dependent components

Working with Complex State274

In this figure, you can see that the BookmarkSummary component is a deeply nested component. Be-
tween it and the News component (which manages the shared state), you have two other components:
the InfoSidebar component and the BookmarkInformation component. In more complex React apps,
having multiple levels of component nesting, as in this example, is very common.

Of course, even with those extra components, state values can still be passed down via props. You
just need to add props to all components between the component that holds the state and the com-
ponent that needs the state. For example, you must pass the bookmarkedArticles state value to the
InfoSidebar component (via props) so that that component can forward it to BookmarkInformation:

import BookmarkInformation from
 '../BookmarkSummary/BookmarkInformation.jsx';
import classes from './InfoSidebar.module.css';

function InfoSidebar({ bookmarkedArticles }) {
 return (
 <aside className={classes.sidebar}>
 <BookmarkInformation bookmarkedArticles={bookmarkedArticles} />
 </aside>
);
}

export default InfoSidebar;

The same procedure is repeated inside of the BookmarkInformation component.

This kind of pattern is called prop drilling. Prop drilling means that a state value is passed through mul-
tiple components via props. And it’s passed through components that don’t need the state themselves
at all—except for forwarding it to a child component (as the InfoSidebar and BookmarkInformation
components are doing in the preceding example).

As a developer, you will typically want to avoid this pattern because prop drilling has a few weaknesses:

•	 Components that are part of prop drilling (such as InfoSidebar or BookmarkInformation) are
not really reusable anymore because any component that wants to use them has to provide a
value for the forwarded state prop.

•	 Prop drilling also leads to a lot of overhead code that has to be written (the code to accept
props and forward props).

Note

You can find the complete example on GitHub at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/11-complex-state/examples/01-cross-cmp-
state.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/01-cross-cmp-state
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/01-cross-cmp-state
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/01-cross-cmp-state

Chapter 11 275

•	 Refactoring components becomes more work because state props have to be added or removed.

For these reasons, prop drilling is only acceptable if all components involved are only used in this
specific part of the overall React app, and the probability of reusing or refactoring them is low.

Since prop drilling should be avoided (in most situations), React offers an alternative: the context API.

Using Context to Handle Multi-Component State
React’s context feature is one that allows you to create a value that can easily be shared across as many
components as needed, without using props.

Figure 11.4: React Context is attached to components to expose it to all child components—without
prop drilling

Using the context API is a multi-step process, the steps for which are described here:

1.	 You must create a context value that should be shared.
2.	 The context must be provided in a parent component of the components that need access to

the context object.
3.	 Components that need access (for reading or writing) must subscribe to the context.

React manages the context value (and its changes) internally and automatically distributes it to all
components that have subscribed to the context.

Before any component may subscribe, however, the first step is to create a context object. This is done
via React’s createContext() function:

import { createContext } from 'react';

Working with Complex State276

createContext('Hello Context'); // a context with an initial string value
createContext({}); // a context with an initial (empty) object as a value

This function takes an initial value that should be shared. It can be any kind of value (e.g., a string or
a number), but typically, it’s an object. This is because most shared values are a combination of the
actual values and functions that should manipulate those values. All these things are then grouped
together into a single context object.

Of course, the initial context value can also be an empty value (e.g., null, undefined, an empty string,
etc.) if needed.

createContext() also returns a value: a context object that should be stored in a capitalized variable
(or constant) because it’s actually a React component (and React components should start with capital
characters).

Here’s how the createContext() function can be called to create a context object for the example
discussed earlier in this chapter:

import { createContext } from 'react';

const BookmarkContext = createContext({
 bookmarkedArticles: []
});

export default BookmarkContext;

Here, the initial value is an object that contains the bookmarkedArticles property, which holds an
(empty) array. You could also store just the array as an initial value (i.e., createContext([])) but an
object is better since more will be added to it later in the chapter.

This code is typically placed in a separate context code file (e.g., bookmark-context.jsx) that’s often
stored in a folder named store (because this context feature can be used as a central state store) or
context. However, this is just a convention and is not technically required. You can put this code
anywhere in your React app.

If the file only contains the above code, it may use .js as a file extension since it doesn’t contain any
JSX code. Later in this chapter, this will change—therefore you can already use .jsx as an extension.

Of course, this initial value is not a replacement for state; it’s a static value that never changes. But this
was just the first of three steps related to context. The next step is to provide the context.

Providing and Managing Context Values
In order to use context values in other components, you must first provide the value. This is done
using the value returned by createContext().

When using React 19 or higher, that function yields a React component that should be wrapped around
all other components that need access to the context value.

Chapter 11 277

When using an older version of React (i.e., React 18 or older), the value returned by createContext()
instead is an object that contains a nested Provider property. That property then holds a React com-
ponent that should be wrapped around all other components that need access to the context value.

So, either way, it’s all about wrapping components with a context provider component.

In the preceding example, using React 19 or higher, the BookmarkContext component returned by
createContext() could be used in the News component to wrap it around both the Articles and
InfoSidebar components:

import Articles from '../Articles/Articles.jsx';
import InfoSidebar from '../InfoSidebar/InfoSidebar.jsx';
import BookmarkContext from '../../store/bookmark-context.jsx';

function News() {
 return (
 <BookmarkContext>
 <Articles />
 <InfoSidebar />
 </BookmarkContext>
);
}

Or, if using React 18 or lower:

import Articles from '../Articles/Articles.jsx';
import InfoSidebar from '../InfoSidebar/InfoSidebar.jsx';
import BookmarkContext from '../../store/bookmark-context.jsx';

function News() {
 return (
 <BookmarkContext.Provider>
 <Articles />
 <InfoSidebar />
 </BookmarkContext.Provider>
);
}

However, this code does not work because one important thing is missing: the component expects a
value prop, which should contain the current context value that should be distributed to interested
components. While you do provide an initial context value (which could have been empty), you also
need to inform React about the current context value because, very often, context values change (they
are often used as a replacement for the cross-component state, after all).

Working with Complex State278

Hence, the code could be altered like this when using React 19 or higher:

import Articles from '../Articles/Articles.jsx';
import InfoSidebar from '../InfoSidebar/InfoSidebar.jsx';
import BookmarkContext from '../../store/bookmark-context.jsx';

function News() {
 const bookmarkCtxValue = {
 bookmarkedArticles: []
 }; // for now, it's the same value as used before, for the initial context

 return (
 <BookmarkContext value={bookmarkCtxValue}>
 <Articles />
 <InfoSidebar />
 </BookmarkContext>
);
}

Or, if using React 18 or lower:

import Articles from '../Articles/Articles.jsx';
import InfoSidebar from '../InfoSidebar/InfoSidebar.jsx';
import BookmarkContext from '../../store/bookmark-context.jsx';

function News() {
 const bookmarkCtxValue = {
 bookmarkedArticles: []
 }; // for now, it's the same value as used before, for the initial context

 return (
 <BookmarkContext.Provider value={bookmarkCtxValue}>
 <Articles />
 <InfoSidebar />
 </BookmarkContext.Provider>
);
}

With this code, an object with a list of bookmarked articles is distributed to interested descendent
components.

Chapter 11 279

The list is still static, though. But that can be changed with a tool you already know about: the useState()
Hook. Inside the News component, you can use the useState() Hook to manage the list of bookmarked
articles, like this:

import { useState } from 'react';

import Articles from '../Articles/Articles.jsx';
import InfoSidebar from '../InfoSidebar/InfoSidebar.jsx';
import BookmarkContext from '../../store/bookmark-context.jsx';

function News() {
 const [savedArticles, setSavedArticles] = useState([]);

 const bookmarkCtxValue = {
 bookmarkedArticles: savedArticles // using the state as a value
 };

 return (
 <BookmarkContext value={bookmarkCtxValue}>
 <Articles />
 <InfoSidebar />
 </BookmarkContext>
);
}

With this change, the context changes from static to dynamic. Whenever the savedArticles state
changes, the context value will change.

Therefore, that’s the missing piece when it comes to providing the context. If the context should be
dynamic (and changeable from inside some nested child component), the context value should also
include a pointer to the function that triggers a state update.

For the preceding example, the code is therefore adjusted like this:

import { useState } from 'react';

import Articles from '../Articles/Articles.jsx';
import InfoSidebar from '../InfoSidebar/InfoSidebar.jsx';
import BookmarkContext from '../../store/bookmark-context.jsx';

function News() {
 const [savedArticles, setSavedArticles] = useState([]);

Working with Complex State280

 function addArticle(article) {
 setSavedArticles(
 (prevSavedArticles) => [...prevSavedArticles, article]
);
 }

 function removeArticle(articleId) {
 setSavedArticles(
 (prevSavedArticles) => prevSavedArticles
 .filter(
 (article) => article.id !== articleId
)
);
 }

 const bookmarkCtxValue = {
 bookmarkedArticles: savedArticles,
 bookmarkArticle: addArticle,
 unbookmarkArticle: removeArticle
 };

 return (
 <BookmarkContext value={bookmarkCtxValue}>
 <Articles />
 <InfoSidebar />
 </BookmarkContext>
);
}

The following are two important things changed in this code snippet:

•	 Two new functions were added: addArticle and removeArticle.
•	 Properties that point at these functions were added to bookmarkCtxValue: the bookmarkArticle

and unbookmarkArticle methods.

The addArticle function adds a new article (which should be bookmarked) to the savedArticles
state. The function form of updating the state value is used since the new state value depends on
the previous state value (the bookmarked article is added to the list of already bookmarked articles).

Similarly, the removeArticle function removes an article from the savedArticles list by filtering the
existing list such that all items, except for the one that has a matching id value, are kept.

Chapter 11 281

If the News component did not use the new context feature, it would be a component that uses state, just
as you have seen many times before in this book. But now, by using React’s context API, those existing
capabilities are combined with a new feature (the context) to create a dynamic, distributable value.

Any components nested in the Articles or InfoSidebar components (or their descendent components)
will be able to access this dynamic context value, and the bookmarkArticle and unbookmarkArticle
methods in the context object, without any prop drilling.

Using Context in Nested Components
With the context created and provided, it’s ready to be used by components that need to access or
change the context value.

To make the context value accessible to components nested inside the context component
(BookmarkContext, in the preceding example), React offers a use() Hook that can be used.

This Hook, however, is only available when working with React 19 or higher. In projects that use older
React versions, you would instead use the useContext() Hook for accessing some context value. That
Hook is also still supported in React 19, hence you can use either of the two Hooks for getting hold
of a context value.

The use() Hook is a bit more flexible than the useContext() Hook since, unlike any other Hooks, it
may actually also be used from inside if statements or loops. In addition, the Hook can be used for
more than getting access to context values—you’ll therefore see use() again in Chapter 17, Understand-
ing React Suspense & The use() Hook.

As mentioned, when working with React 19, if you’re trying to get access to a context value, both use()
and useContext() can be used. Both use() and useContext() require one argument: the context object
that was created via createContext(), i.e., the value returned by that function. As a result, you’ll then
get the value passed to the context provider component (i.e., the value set for its value prop). When
working with React 19 or higher, since use() is a bit more flexible and certainly a bit less to type, you
can ignore useContext() and use the use() Hook for accessing context values.

For the preceding example, the context value can be used in the BookmarkSummary component like this:

import { use } from 'react'; // or import useContext for React < 19

import BookmarkContext from '../../store/bookmark-context.jsx';
import classes from './BookmarkSummary.module.css';

function BookmarkSummary() {

Note

You don’t have to create dynamic context values. You could also distribute a static value to
nested components. This is possible but a rare scenario, since most React apps typically
need dynamic state values that can change across components.

Working with Complex State282

 const bookmarkCtx = use(BookmarkContext);
 // React < 19: const bookmarkCtx = useContext(BookmarkContext);

 const numberOfArticles = bookmarkCtx.bookmarkedArticles.length;

 return (
 <>
 <p className={classes.summary}>
 {numberOfArticles} articles bookmarked
 </p>
 <ul className={classes.list}>
 {bookmarkCtx.bookmarkedArticles.map((article) => (
 <li key={article.id}>{article.title}
))}

 </>
);
}

export default BookmarkSummary;

In this code, use() receives the BookmarkContext value, which is imported from the store/bookmark-
context.jsx file. It then returns the value stored in the context, which is the bookmarkCtxValue found
in the previous code example. As you can see in that snippet, bookmarkCtxValue is an object with
three properties: bookmarkedArticles, bookmarkArticle (a method), and unbookmarkArticle (also
a method).

This returned object is stored in a bookmarkCtx constant. Whenever the context value changes
(because the setSavedArticles state-updating function in the News component is executed), this
BookmarkSummary component will also be executed again by React, and thus bookmarkCtx will hold
the latest state value.

Finally, in the BookmarkSummary component, the bookmarkedArticles property is accessed on the
bookmarkCtx object. This list of articles is then used to calculate the number of bookmarked articles,
output a short summary, and display the list on the screen.

Similarly, BookmarkContext can be used via use() in the Articles component:

import { use } from 'react';
// other imports

function Articles() {
 const bookmarkCtx = use(BookmarkContext);
 // or: const bookmarkCtx = useContext(BookmarkContext)

Chapter 11 283

 return (

 {dummyArticles.map((article) => {
 const isBookmarked = bookmarkCtx.bookmarkedArticles.some(
 (bArticle) => bArticle.id === article.id
);

 // default icon: Empty bookmark icon, because not bookmarked
 let buttonIcon = <FaRegBookmark />;

 if (isBookmarked) {
 buttonIcon = <FaBookmark />;
 }

 return (
 <li key={article.id}>
 <h2>{article.title}</h2>
 <p>{article.description}</p>
 <button>{buttonIcon}</button>

);
 })}

);
}

In this component, the context is used to determine whether or not a given article is currently book-
marked (this information is required in order to change the icon and functionality of the button).

That’s how context values (whether static or dynamic) can be read in components. Of course, they can
also be changed, as discussed in the next section.

Changing Context from Nested Components
React’s context feature is often used to share data across multiple components without using props.
It’s therefore also quite common that some components must manipulate that data. For example, the
context value for a shopping cart must be adjustable from inside the component that displays product
items (because those probably have an "Add to cart" button).

However, to change context values from inside a nested component, you cannot simply overwrite the
stored context value. The following code would not work as intended:

const bookmarkCtx = use(BookmarkContext);

Working with Complex State284

// Note: This does NOT work
bookmarkCtx.bookmarkedArticles = []; // setting the articles to an empty array

This code does not work. Just as you should not try to update state by simply assigning a new value,
you can’t update context values by assigning a new value. That’s why two methods (bookmarkArticle
and unbookmarkArticle) were added to the context value in the Providing and Managing Context Val-
ues section. These two methods point at functions that trigger state updates (via the state-updating
function provided by useState()).

Therefore, in the Articles component, where articles can be bookmarked or unbookmarked via
button clicks, these methods should be called:

// This code is part of the Article component function
// default action => bookmark article, because not bookmarked yet
let buttonAction = () => bookmarkCtx.bookmarkArticle(article);
// default button icon: Empty bookmark icon, because not bookmarked
let buttonIcon = <FaRegBookmark />;

if (isBookmarked) {
 buttonAction = () => bookmarkCtx.unbookmarkArticle(article.id);
 buttonIcon = <FaBookmark />;
}

The bookmarkArticle and unbookmarkArticle methods are called inside of anonymous functions that
are stored in a buttonAction variable. That variable is assigned to the onClick prop of the <button>
(see the previous code snippet).

With this code, the context value can be changed successfully. Thanks to the steps taken in the pre-
vious section (Using Context in Nested Components), whenever the context value is updated, it is then
also automatically reflected in the user interface.

Using the Context API Efficiently
Being able to create, provide, access, and change context is important—ultimately, it is these things
that allow you to use React’s context API in your applications. But as your applications (and therefore
probably also your context values) become more complex, it’s also important to set up and manage
your context efficiently, for example, by getting proper IDE support.

Note

The finished example code can be found on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/
examples/02-cross-cmp-state-with-context.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/02-cross-cmp-state-with-context
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/02-cross-cmp-state-with-context
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/02-cross-cmp-state-with-context

Chapter 11 285

Getting Better Code Completion
In the section Using Context to Handle Multi-Component State, a context object was created via
createContext(). That function received an initial context value—an object that contains a
bookmarkedArticles property, in the preceding example.

In this example, the initial context value isn’t too important. It’s not often used because it’s overwritten
with a new value inside the News component regardless. However, depending on which Integrated
Development Environment (IDE) you’re using, you can get better code auto-completion when defining
an initial context value that has the same shape and structure as the final context value that will be
managed in other React components.

Therefore, since two methods were added to the context value in the section Providing and Managing
Context Values, those methods should also be added to the initial context value in store/bookmark-
context.jsx:

const BookmarkContext = createContext({
 bookmarkedArticles: [],
 bookmarkArticle: () => {},
 unbookmarkArticle: () => {}
});

export default BookmarkContext;

The two methods are added as empty functions that do nothing because the actual logic is set in the
News component. The methods are only added to this initial context value to provide better IDE au-
to-completion. This step is therefore optional.

Context or Lifting State Up?
At this point, you now have two tools for managing cross-component state:

•	 You can lift state up, as described earlier in the book (in Chapter 4, Working with Events and
State, in the Lifting State Up section).

•	 Alternatively, you can use React’s context API, as explained in this chapter.

Which of the two approaches should you use in each scenario?

Ultimately, it is up to you how you manage this, but there are some straightforward rules you can follow:

•	 Lift the state up if you only need to share state across one or two levels of component nesting.
•	 Use the context API if you have long chains of components (i.e., deep nesting of components)

with shared state. Once you start to use a lot of prop drilling, it’s time to consider React’s
context feature.

•	 Also use the context API if you have a relatively flat component tree but want to reuse compo-
nents (i.e., you don’t want to use props for passing state to components).

Working with Complex State286

Outsourcing Context Logic into Separate Components
With the previously explained steps, you have everything you need to manage cross-component state
via context.

But there is one pattern you can consider for managing your dynamic context value and state: creating
a separate component for providing (and managing) the context value.

In the preceding example, the News component was used to provide the context and manage its
(dynamic, state-based) value. While this works, your components can get unnecessarily complex if
they have to deal with context management. Creating a separate, dedicated component for that can
therefore lead to code that’s easier to understand and maintain.

For the preceding example, that means that, inside of the store/bookmark-context.jsx file, you
could create a BookmarkContextProvider component that looks like this:

export function BookmarkContextProvider({ children }) {
 const [savedArticles, setSavedArticles] = useState([]);

 function addArticle(article) {
 setSavedArticles(
 (prevSavedArticles) => [...prevSavedArticles, article]
);
 }

 function removeArticle(articleId) {
 setSavedArticles((prevSavedArticles) =>
 prevSavedArticles.filter((article) => article.id !== articleId)
);
 }

 const bookmarkCtxValue = {
 bookmarkedArticles: savedArticles,
 bookmarkArticle: addArticle,
 unbookmarkArticle: removeArticle,
 };

 return (
 <BookmarkContext value={bookmarkCtxValue}>
 {children}
 </BookmarkContext>
);
}

Chapter 11 287

This component contains all the logic related to managing a list of bookmarked articles via state. It
creates the same context value as before (a value that contains the list of articles as well as two meth-
ods for updating that list).

The BookmarkContextProvider component does one additional thing though. It uses the special
children prop (covered in Chapter 3, Components and Props, in the The Special “children” Prop sec-
tion) to wrap whatever is passed between the BookmarkContextProvider's component tags with
BookmarkContext.

This allows the use of the BookmarkContextProvider component in the News component, like so:

import Articles from '../Articles/Articles.jsx';
import InfoSidebar from '../InfoSidebar/InfoSidebar.jsx';
import { BookmarkContextProvider } from '../../store/bookmark-context.jsx';

function News() {
 return (
 <BookmarkContextProvider>
 <Articles />
 <InfoSidebar />
 </BookmarkContextProvider>
);
}

export default News;

Instead of managing the entire context value, the News component now simply imports the
BookmarkContextProvider component and wraps that component around Articles and InfoSidebar.
The News component, therefore, is leaner.

Combining Multiple Contexts
Especially in bigger and more feature-rich React applications, it is possible (and quite probable), that
you will need to work with multiple context values that are likely unrelated to each other. For example,
an online shop could use one context for managing the shopping cart, another context for the user
authentication status, and yet another context value for tracking page analytics.

Note

This pattern is entirely optional. It’s neither an official best practice nor does it yield
any performance benefits. It’s just a pattern that can help with keeping your component
functions lean and concise.

It’s also worth mentioning that there is a related pattern for consuming context. That pat-
tern, however, relies on building a custom React Hook—a concept that will be covered in
the next chapter. Therefore, the mentioned context consumption pattern will be covered
in the next chapter, too.

Working with Complex State288

React fully supports use cases like this. You can create, manage, provide, and use as many context values
as needed. You can manage multiple (related or unrelated) values in a single context or use multiple
contexts. You can provide multiple contexts in the same component or in different components. It is
totally up to you and your app’s requirements.

You can also use multiple contexts in the same component (meaning that you can call use() or
useContext() multiple times, with different context values).

Limitations of useState()
Thus far in this chapter, the complexity of cross-component state has been explored. But state manage-
ment can also get challenging in scenarios where some state is only used inside a single component.

useState() is a great tool for state management in most scenarios (of course, right now, it’s also the
only tool that’s been covered). Therefore, useState() should be your default choice for managing
state. But useState() can reach its limits if you need to derive a new state value that’s based on the
value of another state variable, as in this example:

setIsLoading(fetchedPosts ? false : true);

This short snippet is taken from a component where an HTTP request is sent to fetch some blog posts:

function App() {
 const [fetchedPosts, setFetchedPosts] = useState(null);
 const [isLoading, setIsLoading] = useState(false);
 const [error, setError] = useState();

 const fetchPosts = useCallback(async function fetchPosts() {
 setIsLoading(fetchedPosts ? false : true);

 try {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 setIsLoading(false);
 setError(null);
 setFetchedPosts(posts);
 } catch (error) {

Chapter 11 289

 setIsLoading(false);
 setError(error.message);
 setFetchedPosts(null);
 }
 }, []);

 useEffect(
 function () {
 fetchPosts();
 },
 [fetchPosts]
);

 return (
 <>
 {isLoading && <p>Loading...</p>}
 {error && <p>{error}</p>}
 {fetchedPosts && <BlogPosts posts={fetchedPosts} />}
 </>
);
}

When initiating the request, an isLoading state value (responsible for showing a loading indicator
on the screen) should be set to true only if no data was fetched before. If data was fetched before
(i.e., fetchedPosts is not null), that data should still be shown on the screen, instead of some loading
indicator.

At first sight, this code might not look problematic. But it actually violates an important rule related
to useState(): you should not reference the current state to set a new state value. If you need to do so,
you should instead use the function form of the state updating function (see the Updating State Based
on Previous State Correctly section of Chapter 4, Working with Events and State).

However, in the preceding example, this solution won’t work. If you switch to the functional state-up-
dating form, you only get access to the current value of the state you’re trying to update. You don’t
get (safe) access to the current value of some other state. In the preceding example, another state
(fetchedPosts instead of isLoading) is referenced. Therefore, you must violate the mentioned rule.

Note

You’ll find the complete example code on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/
examples/04-complex-usestate.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/04-complex-usestate
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/04-complex-usestate
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/examples/04-complex-usestate

Working with Complex State290

This violation also has real consequences (in this example). The following code snippet is part of a
function called fetchPosts, which is wrapped with useCallback():

const fetchPosts = useCallback(async function fetchPosts() {
 setIsLoading(fetchedPosts ? false : true);
 setError(null);

 try {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 setIsLoading(false);
 setError(null);
 setFetchedPosts(posts);
 } catch (error) {
 setIsLoading(false);
 setError(error.message);
 setFetchedPosts(null);
 }
}, []);

This function sends an HTTP request and changes multiple state values based on the state of the request.

useCallback() is used to avoid an infinite loop related to useEffect() (see Chapter 8, Handling Side
Effects, to learn more about useEffect(), infinite loops, and useCallback() as a remedy). Normally,
fetchedPosts should be added as a dependency to the dependencies array passed as a second argument
to the useCallback() function. However, in this example, this can’t be done because fetchedPosts
is changed inside the function wrapped by useCallback(), and the state value is therefore not just a
dependency but also actively changed. This causes an infinite loop.

As a result, a warning is shown in the terminal and the intended behavior of not showing the loading
indicator if data was fetched before is not achieved:

Figure 11.5: A warning about the missing dependency is output in the terminal

Chapter 11 291

Problems like the one just described are common if you have multiple related state values that depend
on each other.

One possible solution would be to move from multiple, individual state slices (fetchedPosts, isLoading,
and error) to a single, combined state value (i.e., to an object). That would ensure that all state values
are grouped together and can thereby be accessed safely when using the functional state-updating
form. The state-updating code could then look like this:

setHttpState(prevState => ({
 fetchedPosts: prevState.fetchedPosts,
 isLoading: prevState.fetchedPosts ? false : true,
 error: null
}));

This solution would work. However, ending up with ever more complex (and nested) state objects,
managed via useState(), is not typically desirable as it can make state management a bit harder and
bloat your component code.

That’s why React offers an alternative to useState(): the useReducer() Hook.

Managing State with useReducer()
Just like useState(), useReducer() is a React Hook. And just like useState(), it is a Hook that can
trigger component function re-evaluations. But, of course, it works slightly differently; otherwise, it
would be a redundant Hook.

useReducer() is a Hook meant to be used for managing complex state objects. You will rarely (probably
never) use it to manage simple string or number values.

This Hook takes two main arguments:

•	 A reducer function
•	 An initial state value

This brings up an important question: what is a reducer function?

Understanding Reducer Functions
In the context of useReducer(), a reducer function is a function that receives two parameters:

•	 The current state value
•	 An action that was dispatched

Besides receiving arguments, a reducer function must also return a value: the new state. It’s called a
reducer function because it reduces the old state (combined with an action) to a new state.

Working with Complex State292

To make this all a bit easier to grasp and reason through, the following code snippet shows how
useReducer() is used in conjunction with such a reducer function:

const initialHttpState = {
 data: null,
 isLoading: false,
 error: null,
};

function httpReducer(state, action) {
 if (action.type === 'FETCH_START') {
 return {
 ...state, // copying the existing state
 isLoading: state.data ? false : true,
 error: null,
 };
 }

 if (action.type === 'FETCH_ERROR') {
 return {
 data: null,
 isLoading: false,
 error: action.payload,
 };
 }

 if (action.type === 'FETCH_SUCCESS') {
 return {
 data: action.payload,
 isLoading: false,
 error: null,
 };
 }

 return initialHttpState; // default value for unknown actions
}

function App() {
 useReducer(httpReducer, initialHttpState);

 // more component code, not relevant for this snippet / explanation
}

Chapter 11 293

At the bottom of this snippet, you can see that useReducer() is called inside of the App component
function. Like all React Hooks, it must be called inside of component functions or other Hooks. You
can also see the two arguments that were mentioned previously (the reducer function and the initial
state value) being passed to useReducer().

httpReducer is the reducer function. The function takes two arguments (state, which is the old state,
and action, which is the dispatched action) and returns different state objects for different action types.

This reducer function takes care of all possible state updates. The entire state-updating logic is therefore
outsourced from the component (note that httpReducer is defined outside of the component function).

But the component function must, of course, be able to trigger the defined state updates. That’s where
actions become important.

Dispatching Actions
The code shown previously is incomplete. When calling useReducer() in a component function, it
does not just take two arguments. Instead, the Hook also returns a value—an array with exactly two
elements (just like useState(), though the elements are different).

useReducer() should therefore be used like this (in the App component):

const [httpState, dispatch] = useReducer(
 httpReducer,
 initialHttpState
);

In this snippet, array destructuring is used to store the two elements (and it is always exactly two!) in
two different constants: httpState and dispatch.

The first element in the returned array (httpState, in this case) is the state value returned by the
reducer function. It’s updated (meaning that the component function is called by React) whenever
the reducer function is executed again. The element is called httpState in this example because it
contains the state value, which is related to an HTTP request in this instance. That said, how you name
the element in your case is up to you.

Note

In this example, the reducer function is created outside of the component function. You
could also create it inside the component function, but that is not recommended. If you
create the reducer function inside the component function, it will technically be recreated
every time the component function is executed. This impacts performance unnecessarily
since the reducer function does not need access to any component function values (state
or props).

Working with Complex State294

The second element (dispatch, in the example) is a function. It’s a function that can be called to trigger
a state update (i.e., to execute the reducer function again). When executed, the dispatch function
must receive one argument—that is, the action value that will be available inside of the reducer func-
tion (via the reducer function’s second argument). Here’s how dispatch can be used in a component:

dispatch({ type: 'FETCH_START' });

The element is called dispatch in the example because it’s a function used for dispatching actions to
the reducer function. Just as before, the name is up to you, but dispatch is a commonly chosen name.

The shape and structure of that action value are also entirely up to you, but it’s often set to an object
that contains a type property. The type property is used in the reducer function to perform different
actions for different types of actions. type therefore acts as an action identifier. You can see the type
property being used inside the httpReducer function:

function httpReducer(state, action) {
 if (action.type === 'FETCH_START') {
 return {
 ...state, // copying the existing state
 isLoading: state.data ? false : true,
 error: null,
 };
 }

 if (action.type === 'FETCH_ERROR') {
 return {
 data: null,
 isLoading: false,
 error: action.payload,
 };
 }

 if (action.type === 'FETCH_SUCCESS') {
 return {
 data: action.payload,
 isLoading: false,
 error: null,
 };
 }

 return initialHttpState; // default value for unknown actions
}

Chapter 11 295

You can add as many properties to the action object as needed. In the preceding example, some state
updates access action.payload to extract some extra data from the action object. Inside a component,
you would pass data along with the action like this:

dispatch({ type: 'FETCH_SUCCESS', payload: posts });

Again, the property name (payload) is up to you, but passing extra data along with the action allows
you to perform state updates that rely on data generated by the component function.

Here’s the complete, final code for the entire App component function:

// code for httpReducer etc. did not change

function App() {
 const [httpState, dispatch] = useReducer(
 httpReducer,
 initialHttpState
);

 // Using useCallback() to prevent an infinite loop in useEffect()
 const fetchPosts = useCallback(async function fetchPosts() {
 dispatch({ type: 'FETCH_START' });

 try {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 dispatch({ type: 'FETCH_SUCCESS', payload: posts });
 } catch (error) {
 dispatch({ type: 'FETCH_ERROR', payload: error.message });
 }
 }, []);

 useEffect(
 function () {
 fetchPosts();

Working with Complex State296

 },
 [fetchPosts]
);

 return (
 <>
 <header>
 <h1>Complex State Blog</h1>
 <button onClick={fetchPosts}>Load Posts</button>
 </header>
 {httpState.isLoading && <p>Loading...</p>}
 {httpState.error && <p>{httpState.error}</p>}
 {httpState.data && <BlogPosts posts={httpState.data} />}
 </>
);
}

In this code snippet, you can see how different actions (with different type and sometimes payload
properties) are dispatched. You can also see that the httpState value is used to show different user
interface elements based on the state (e.g., <p>Loading…</p> is shown if httpState.isLoading is true).

Summary and Key Takeaways
•	 State management can have its challenges—especially when dealing with cross-component

(or app-wide) state or complex state values.
•	 Cross-component state can be managed by lifting state up or by using React’s context API.
•	 The context API is typically preferable if you do a lot of prop drilling (forwarding state values

via props across multiple component layers).
•	 When using the context API, you use createContext() to create a new context object.
•	 The created context object is a component that must be wrapped around the part of the com-

ponent tree that should get access to the context.
•	 When working with React 18 or older, the context object itself is not a component but an object

that offers a nested Provider property that is a component.
•	 Components can access the context value via the use() (with React 19 or higher) or useContext()

Hooks.
•	 For managing complex state values, useReducer() can be a good alternative to useState().
•	 useReducer() utilizes a reducer function that converts the current state and a dispatched

action to a new state value.
•	 useReducer() returns an array with exactly two elements: the state value and a dispatch func-

tion, which is used for dispatching actions.

Chapter 11 297

What’s Next?
Being able to manage both simple and complex state values efficiently is important. This chapter
introduced two crucial tools that help with the task.

With the context API’s use(), useContext(), and useReducer() Hooks, three new React Hooks were
introduced. Combined with all the other Hooks covered thus far in the book, these mark the last of
the React Hooks you will need in your everyday work as a React developer.

As a React developer, you’re not limited to the built-in Hooks, though. You can also build your own
Hooks. The next chapter will finally explore how that works and why you might want to build custom
Hooks in the first place.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following questions.
You can then compare your answers to the examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/11-complex-state/exercises/questions-
answers.md:

1.	 Which problem can be solved with React’s context API?
2.	 Which three main steps have to be taken when using the context API?
3.	 When might useReducer() be preferred over useState()?
4.	 When working with useReducer(), what’s the role of actions?

Apply What You Learned
Apply your knowledge about the context API and the useReducer() Hook to some real problems.

Activity 11.1: Migrating an App to the Context API
In this activity, your task is to improve an existing React project. Currently, the app is built without
the context API, and so cross-component state is managed by lifting the state up. In this project, prop
drilling is the consequence in some components. Therefore, the goal is to adjust the app such that the
context API is used for cross-component state management.

Note

You can find the starting code for this activity at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/11-complex-state/activities/practice-1-
start. When downloading this code, you’ll always download the entire repository. Make
sure to then navigate to the subfolder with the starting code (activities/practice-1-
start in this case) to use the right code snapshot.

The provided project also uses many features covered in earlier chapters. Take your time
to analyze it and understand the provided code. This is great practice and allows you to
see many key concepts in action.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/11-complex-state/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/11-complex-state/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/11-complex-state/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-1-start

Working with Complex State298

Once you have downloaded the code and run npm install in the project folder (to install all required
dependencies), you can start the development server via npm run dev. As a result, upon visiting
localhost:5173, you should see the following user interface:

Figure 11.6: The running starting project

To complete the activity, the steps are as follows:

1.	 Create a new context for the cart items.
2.	 Create a Provider component for the context and handle all context-related state changes there.
3.	 Provide the context (with the help of the Provider component) and make sure all components

that need access to the context have access.
4.	 Remove the old logic (where state was lifted up).
5.	 Use the context in all the components that need access to it.

The user interface should be the same as that shown in Figure 11.6 once you have completed the
activity. Make sure that the user interface works exactly as it did before you implemented React’s
context features.

Chapter 11 299

Activity 11.2: Replacing useState() with useReducer()
In this activity, your task is to replace the useState() Hooks in the Form component with useReducer().
Use only one single reducer function (and thus only one useReducer() call) and merge all relevant
state values into one state object.

Once you have downloaded the code and run npm install in the project folder (to install all required
dependencies), you can start the development server via npm run dev. As a result, upon visiting
localhost:5173, you should see the following user interface:

Figure 11.7: The running starting project

In the provided starting project, users get one of three results upon clicking the Submit button:

1.	 If one or both input fields didn’t receive any input, an error message tells users to fill in the form.
2.	 If users entered values into both input fields, but at least one of the inputs holds an invalid

value, a different error message is shown.

Note

All code files used for this activity, and the solution, can be found at https://github.
com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/
activities/practice-1.

Note

You can find the starting code for this activity at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/11-complex-state/activities/practice-2-
start. When downloading this code, you’ll always download the entire repository. Make
sure to then navigate to the subfolder with the starting code (activities/practice-2-
start in this case) to use the right code snapshot.

The provided project also uses many features covered in earlier chapters. Take your time
to analyze it and understand the provided code. This is great practice and allows you to
see many key concepts in action.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-2-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-2-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-2-start

Working with Complex State300

3.	 If users entered valid values into both input fields, the entered values are printed in the devel-
oper tools JavaScript console.

To complete the activity, the solution steps are as follows:

1.	 Remove (or comment out) the existing logic in the Form component that uses the useState()
Hook for state management.

2.	 Add a reducer function that handles two actions (email changed and password changed) and
also returns a default value.

3.	 Update the state object based on the dispatched action type (and payload, if needed).
4.	 Use the reducer function with the useReducer() Hook.
5.	 Dispatch the appropriate actions (with the appropriate data) in the Form component.
6.	 Use the state value where needed.

The user interface should be the same as that shown in Figure 11.7 once you’ve finished the activity.
Make sure that the user interface works exactly as it did before you implemented React’s context
features.

Note

All code files used for this activity, and the solution, can be found at https://github.
com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/
activities/practice-2.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-2
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/11-complex-state/activities/practice-2

12
Building Custom React Hooks

Introduction
Throughout this book, one key React feature has been referenced repeatedly in many different vari-
ations. That feature is React Hooks.

Hooks power almost all core functionalities and concepts offered by React—from state management in
a single component to accessing cross-component state (context) in multiple components. They enable
you to access JSX elements via refs and allow you to handle side effects inside of component functions.

Without Hooks, modern React would not work, and building feature-rich applications would be im-
possible.

Thus far, only built-in Hooks have been introduced and used. However, you can build your own cus-
tom Hooks as well—or you can use custom Hooks built by other developers (e.g., by using third-party
libraries). In this chapter, you will learn why you might want to do this and how it works.

Introducing Custom Hooks
Before starting to build custom Hooks, it’s very important to understand what exactly custom Hooks are.

In React apps, custom Hooks are regular JavaScript functions that satisfy the following conditions:

•	 The function name starts with use (just as all built-in Hooks start with use: useState(),
useReducer(), etc.).

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Build your own React Hooks
•	 Use custom and default React Hooks in your components

Building Custom React Hooks302

•	 The function calls another React Hook (a built-in one or a custom one—doesn’t matter).
•	 The function does not just return JSX code (otherwise, it would essentially be a React com-

ponent), though it could return some JSX code—as long as that’s not the only value returned.

If a function meets these three conditions, it can (and should) be called a custom (React) Hook. So,
custom Hooks are really just normal functions with special names (starting with use) that call other
(custom or built-in) Hooks and that do not (just) return JSX code. If you try to call a (custom or built-
in) Hook in some other place (e.g., outside of any function or in a regular, non-Hook function), you
might get a warning (depending on your project setup; see below).

For example, the following function uses the useEffect() Hook but has a name that does not start
with use. It is therefore not in line with the official naming recommendation:

function sendAnalyticsEvent(event) {
 useEffect(() => {
 fetch('https://my-analytics-backend.com/events', {
 method: 'POST',
 body: JSON.stringify(event)
 })
 }, []);
}

In projects that perform code linting to check your code for rule violations, this code would produce
a warning because this function doesn’t qualify as a custom Hook (due to its name).

Figure 12.1: React complains if you call a Hook function in the wrong place

As the warning states, Hooks, whether custom or built-in, must only be called inside component
functions. And, even though the warning message doesn’t explicitly mention it, they may also be
called inside of custom Hooks.

So, if the sendAnalyticsEvent() function is renamed useSendAnalyticsEvent(), the warning disap-
pears since the function now qualifies as a custom Hook.

Even though it’s technically not a hard rule that’s enforced by React itself, it’s a strong recommendation
to follow this naming convention.

Being able to build custom Hooks is an extremely important feature because it means that you can
build reusable non-component functions that can contain state logic (via useState() or useReducer()),
handle side effects in your reusable custom Hook functions (via useEffect()), or use any other React
Hook. With normal, non-Hook functions, none of these would be possible, and you would therefore
be unable to outsource any logic that involves a React Hook into such functions.

Chapter 12 303

In this way, custom Hooks complement the concept of React components. While React components
are reusable UI building blocks (which may contain stateful logic), custom Hooks are reusable logic
snippets that can be used in your component functions. Thus, custom Hooks help you reuse shared
logic across components. For example, custom Hooks enable you to outsource the logic for sending
an HTTP request and handling the related states (loading, error, etc.).

Why Would You Build Custom Hooks?
In the previous chapter (Chapter 11, Working with Complex State), when the useReducer() Hook was
introduced, an example was provided in which the Hook was utilized in sending an HTTP request.
Here’s the relevant, final code again:

const initialHttpState = {
 data: null,
 isLoading: false,
 error: null,
};

function httpReducer(state, action) {
 if (action.type === 'FETCH_START') {
 return {
 ...state, // copying the existing state
 isLoading: state.data ? false : true,
 error: null,
 };
 }

 if (action.type === 'FETCH_ERROR') {
 return {
 data: null,
 isLoading: false,
 error: action.payload,
 };
 }

 if (action.type === 'FETCH_SUCCESS') {
 return {
 data: action.payload,
 isLoading: false,
 error: null,
 };
 }

Building Custom React Hooks304

 return initialHttpState; // default value for unknown actions
}

function App() {
 const [httpState, dispatch] = useReducer(
 httpReducer,
 initialHttpState
);

 const fetchPosts = useCallback(async function fetchPosts() {
 dispatch({ type: 'FETCH_START' });

 try {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 dispatch({ type: 'FETCH_SUCCESS', payload: posts });
 } catch (error) {
 dispatch({ type: 'FETCH_ERROR', payload: error.message });
 }
 }, []);

 useEffect(
 function () {
 fetchPosts();
 },
 [fetchPosts]
);

 return (
 <>
 <header>
 <h1>Complex State Blog</h1>

Chapter 12 305

 <button onClick={fetchPosts}>Load Posts</button>
 </header>
 {httpState.isLoading && <p>Loading...</p>}
 {httpState.error && <p>{httpState.error}</p>}
 {httpState.data && <BlogPosts posts={httpState.data} />}
 </>
);
};

In this code example, an HTTP request is sent whenever the App component is rendered for the first
time. The HTTP request fetches a list of (dummy) posts. Until the request finishes, a loading message
(<p>Loading…</p>) is displayed to the user. If there’s an error, an error message is displayed.

As you can see, quite a lot of code must be written to handle this relatively basic use case. And, espe-
cially in bigger React apps, it is quite likely that multiple components will need to send HTTP requests.
They probably won’t need to send the exact same request to the same URL (https://jsonplaceholder.
typicode.com/posts, in this example), but it’s definitely possible that different components will fetch
different data from different URLs.

Therefore, almost the exact same code must be written over and over again in multiple components.
And it’s not just the code for sending the HTTP request (i.e., the function wrapped by useCallback()).
Instead, the HTTP-related state management (done via useReducer(), in this example), as well as the
request initialization via useEffect(), must be repeated in all those components.

And that is where custom Hooks come in to save the day. Custom Hooks help you avoid this repeti-
tion by allowing you to build reusable, potentially stateful “logic snippets” that can be shared across
components.

A First Custom Hook
Before exploring advanced scenarios and solving the HTTP request problem mentioned previously,
here’s a more basic example of a first, custom Hook:

import { useState } from 'react';

function useCounter() {
 const [counter, setCounter] = useState(0);

 function increment() {
 setCounter(oldCounter => oldCounter + 1);
 };

 function decrement() {
 setCounter(oldCounter => oldCounter - 1);
 };

Building Custom React Hooks306

 return { counter, increment, decrement };
};

export default useCounter;

This code can be stored in a file named use-counter.js inside a hooks/ folder—though both names
are totally up to you. There are no rules regarding the file or the folder name (or, in general, the place
where you store this code). The file extension is .js instead of .jsx since this file contains no JSX code.

As you can see, useCounter is a regular JavaScript function. The name of the function starts with use,
and therefore this function qualifies as a custom Hook (meaning you won’t get any warning messages
when using other Hooks inside of it).

Inside useCounter(), a counter state is managed via useState(). The state is changed via two nested
functions (increment and decrement), and the state, as well as the functions, is returned by useCounter
(grouped together in a JavaScript object).

This custom Hook can be stored in a separate file (e.g., in a hooks folder inside the React project, such
as src/hooks/use-counter.js). Thereafter, it can be used in any React component, and you can use
it in as many React components as needed.

For example, the following two components (Demo1 and Demo2) could use this useCounter Hook as
follows:

import useCounter from './hooks/use-counter.js';

function Demo1() {
 const { counter, increment, decrement } = useCounter();

 return (
 <>
 <p>{counter}</p>
 <button onClick={increment}>Inc</button>

Note

The syntax used to group counter, increment, and decrement together uses a regular
JavaScript feature: shorthand property names.

If a property name in an object literally matches the name of the variable whose value is
assigned to the property, you can use this shorter notation.

Instead of writing { counter: counter, increment: increment, decrement:
decrement }, you can use the shorthand notation { counter, increment, decrement
} shown in the snippet above.

Chapter 12 307

 <button onClick={decrement}>Dec</button>

 </>
);
};

function Demo2() {
 const { counter, increment, decrement } = useCounter();

 return (
 <>
 <p>{counter}</p>
 <button onClick={increment}>Inc</button>
 <button onClick={decrement}>Dec</button>
 </>
);
};

function App() {
 return (
 <main>
 <Demo1 />
 <Demo2 />
 </main>
);
};

export default App;

The Demo1 and Demo2 components both execute useCounter() inside of their component functions.
The useCounter() function is called a normal function because it is a regular JavaScript function.

Since the useCounter Hook returns an object with three properties (counter, increment, and
decrement), Demo1 and Demo2 use object destructuring to store the property values in local constants.
These values are then used in the JSX code to output the counter value and connect the two <button>
elements to the increment and decrement functions.

Note

You will find the full example code at https://github.com/mschwarzmueller/book-
react-key-concepts-e2/tree/12-custom-hooks/examples/01-first-hook.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/examples/01-first-hook
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/examples/01-first-hook

Building Custom React Hooks308

After pressing the buttons a couple of times each, the resulting user interface might look like this:

Figure 12.2: Two independent counters

In this screenshot, you can also see a very interesting and important behavior of custom Hooks. That
is, if the same stateful custom Hook is used in multiple components, every component gets its own
state. The counter state is not shared. The Demo1 component manages its own counter state (through
the useCounter() custom Hook), and so does the Demo2 component.

Custom Hooks: A Flexible Feature
The two independent states of Demo1 and Demo2 show a very important feature of custom Hooks: you
use them to share logic, not state. If you needed to share state across components, you would do so
with React context (see the previous chapter).

When using Hooks, every component uses its own “instance” (or “version”) of that Hook. It’s always
the same logic, but any state or side effects handled by a Hook are handled on a per-component basis.

It’s also worth noting that custom Hooks can be stateful but don’t have to be. They can manage state
via useState() or useReducer(), but you could also build custom Hooks that only handle side effects
(without any state management).

There’s only one thing you implicitly have to do in custom Hooks: you must use some other React Hook
(custom or built-in). This is because if you didn’t include any other Hook, there would be no need to
build a custom Hook in the first place. A custom Hook is just a regular JavaScript function (with a name
starting with use) with which you are allowed to use other Hooks. If you don’t need to use any other
Hooks, you can simply build a normal JavaScript function with a name that does not start with use.

You also have a lot of flexibility regarding the logic inside the Hook, its parameters, and the value it
returns. Regarding the Hook logic, you can add as much logic as needed. You can manage no state or
multiple state values. You can include other custom Hooks or only use built-in Hooks. You can man-
age multiple side effects, work with refs, or perform complex calculations. There are no restrictions
regarding what can be done in a custom Hook.

Chapter 12 309

Custom Hooks and Parameters
You can also accept and use parameters in your custom Hook functions. For example, the useCounter
Hook from the A First Custom Hook section can be adjusted to take an initial counter value and separate
values by which the counter should be increased or decreased, as shown in the following snippet:

import { useState } from 'react';

function useCounter(initialValue, incVal, decVal) {
 const [counter, setCounter] = useState(initialValue);

 function increment() {
 setCounter(oldCounter => oldCounter + incVal);
 };

 function decrement() {
 setCounter(oldCounter => oldCounter - decVal);
 };

 return { counter, increment, decrement };
};

export default useCounter;

In this adjusted example, the initialValue parameter is used to set the initial state via
useState(initialValue). The incVal and decVal parameters are used in the increment and decrement
functions to change the counter state with different values.

Of course, once parameters are used in a custom Hook, fitting parameter values must be provided
when the custom Hook is called in a component function (or in another custom Hook). Therefore, the
code for the Demo1 and Demo2 components must also be adjusted—for example, like this:

function Demo1() {
 const { counter, increment, decrement } = useCounter(1, 2, 1);

 return (
 <>
 <p>{counter}</p>
 <button onClick={increment}>Inc</button>
 <button onClick={decrement}>Dec</button>

 </>
);
};

Building Custom React Hooks310

function Demo2() {
 const { counter, increment, decrement } = useCounter(0, 1, 2);

 return (
 <>
 <p>{counter}</p>
 <button onClick={increment}>Inc</button>
 <button onClick={decrement}>Dec</button>
 </>
);
};

Now, both components pass different parameter values to the useCounter Hook function. Therefore,
they can reuse the same Hook and its internal logic dynamically.

Custom Hooks and Return Values
As shown with useCounter, custom Hooks may return values. And this is important: they may return
values, but they don’t have to. If you build a custom Hook that only handles some side effects (via
useEffect()), you don’t have to return any value (because there probably isn’t any value that should
be returned).

But if you do need to return a value, you decide which type of value you want to return. You could
return a single number or string. If your Hook must return multiple values (like useCounter does),
you can group these values into an array or object. You can also return arrays that contain objects or
vice versa. In short, you can return anything. It is a normal JavaScript function, after all.

Some built-in Hooks such as useState() and useReducer() return arrays (with a fixed number of
elements). useRef(), on the other hand, returns an object (which always has a current property).
useEffect() returns nothing. Your Hooks can therefore return whatever you want.

For example, the useCounter Hook from previously could be rewritten to return an array instead:

import { useState } from 'react';

function useCounter(initialValue, incVal, decVal) {
 const [counter, setCounter] = useState(initialValue);

 function increment() {

Note

You can also find this code on GitHub at https://github.com/mschwarzmueller/book-
react-key-concepts-e2/tree/12-custom-hooks/examples/02-parameters.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/examples/02-parameters
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/examples/02-parameters

Chapter 12 311

 setCounter((oldCounter) => oldCounter + incVal);
 }

 function decrement() {
 setCounter((oldCounter) => oldCounter - decVal);
 }

 return [counter, increment, decrement];
}

export default useCounter;

To use the returned values, then, the Demo1 and Demo2 components need to switch from object de-
structuring to array destructuring, as follows:

function Demo1() {
 const [counter, increment, decrement] = useCounter(1, 2, 1);

 return (
 <>
 <p>{counter}</p>
 <button onClick={increment}>Inc</button>
 <button onClick={decrement}>Dec</button>
 </>
);
}

function Demo2() {
 const [counter, increment, decrement] = useCounter(0, 1, 2);

 return (
 <>
 <p>{counter}</p>
 <button onClick={increment}>Inc</button>
 <button onClick={decrement}>Dec</button>
 </>
);
}

The two components behave like before, so you can decide which return value you prefer.

Building Custom React Hooks312

A More Complex Example
The previous examples were deliberately rather simple. Now that the basics of custom Hooks are clear,
it makes sense to dive into a slightly more advanced and realistic example.

Consider the HTTP request example from the beginning of this chapter:

const initialHttpState = {
 data: null,
 isLoading: false,
 error: null,
};

function httpReducer(state, action) {
 if (action.type === 'FETCH_START') {
 return {
 ...state, // copying the existing state
 isLoading: state.data ? false : true,
 error: null,
 };
 }

 if (action.type === 'FETCH_ERROR') {
 return {
 data: null,
 isLoading: false,
 error: action.payload,
 };
 }

 if (action.type === 'FETCH_SUCCESS') {
 return {
 data: action.payload,
 isLoading: false,
 error: null,
 };
 }

Note

This finished code can also be found on GitHub at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/12-custom-hooks/examples/03-return-values.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/examples/03-return-values
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/examples/03-return-values

Chapter 12 313

 return initialHttpState; // default value for unknown actions
}

function App() {
 const [httpState, dispatch] = useReducer(
 httpReducer,
 initialHttpState
);

 const fetchPosts = useCallback(async function fetchPosts() {
 dispatch({ type: 'FETCH_START' });

 try {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 dispatch({ type: 'FETCH_SUCCESS', payload: posts });
 } catch (error) {
 dispatch({ type: 'FETCH_ERROR', payload: error.message });
 }
 }, []);

 useEffect(
 function () {
 fetchPosts();
 },
 [fetchPosts]
);

 return (
 <>
 <header>
 <h1>Complex State Blog</h1>

Building Custom React Hooks314

 <button onClick={fetchPosts}>Load Posts</button>
 </header>
 {httpState.isLoading && <p>Loading...</p>}
 {httpState.error && <p>{httpState.error}</p>}
 {httpState.data && <BlogPosts posts={httpState.data} />}
 </>
);
};

In that example, the entire useReducer() logic (including the reducer function, httpReducer) and
the useEffect() call can be outsourced into a custom Hook. The result would be a very lean App
component and a reusable Hook that could be used in other components as well.

Building a First Version of the Custom Hook
This custom Hook could be named useFetch (since it fetches data), and it could be stored in hooks/
use-fetch.js. Of course, both the Hook name as well as the file storage path are up to you. Here’s
how the first version of useFetch might look:

import { useCallback, useEffect, useReducer } from 'react';

const initialHttpState = {
 data: null,
 isLoading: false,
 error: null,
};

function httpReducer(state, action) {
 // same reducer code as before
}

function useFetch() {
 const [httpState, dispatch] = useReducer(
 httpReducer,
 initialHttpState
);

 const fetchPosts = useCallback(async function fetchPosts() {
 dispatch({ type: 'FETCH_START' });

 try {
 const response = await fetch(

Chapter 12 315

 'https://jsonplaceholder.typicode.com/posts'
);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 dispatch({ type: 'FETCH_SUCCESS', payload: posts });
 } catch (error) {
 dispatch({ type: 'FETCH_ERROR', payload: error.message });
 }
 }, []);

 useEffect(
 function () {
 fetchPosts();
 },
 [fetchPosts]
);
}

export default useFetch;

Please note that this is not the final version.

In this first version, the useFetch Hook contains the useReducer() and useEffect() logic. It’s worth
noting that the httpReducer function is created outside of useFetch. This ensures that the function is
not recreated unnecessarily when useFetch() is re-executed (which will happen often as it is called
every time the component that uses this Hook is re-evaluated). The httpReducer function will there-
fore only be created once (for the entire application lifetime), and that same function instance will
be shared by all components that use useFetch.

Since httpReducer is a pure function (that is, it always produces new return values that are based purely
on the parameter values), sharing this function instance is fine and won’t cause any unexpected bugs.
If httpReducer were to store or manipulate any values that are not based on function inputs, it should
be created inside of useFetch instead. This way, you avoid having multiple components accidentally
manipulate and use shared values.

However, this version of the useFetch Hook has two big issues:

•	 Currently, no value is returned. Therefore, components that use this Hook won’t get access to
the fetched data or the loading state.

Building Custom React Hooks316

•	 The HTTP request URL is hardcoded into useFetch. As a result, all components that use this
Hook will send the same kind of request to the same URL.

Therefore, to improve this Hook, these two issues must be tackled—starting with the first one.

Making the Hook Useful by Returning Values
The first issue can be solved by returning the fetched data (or undefined, if no data was fetched yet),
the loading state value, and the error value. Since these values are exactly the values that make up
the httpState object returned by useReducer(), useFetch can simply return that entire httpState
object, as shown here:

// httpReducer function and initial state did not change,
// hence omitted here
function useFetch() {
 const [httpState, dispatch] = useReducer(
 httpReducer,
 initialHttpState
);

 const fetchPosts = useCallback(async function fetchPosts() {
 dispatch({ type: 'FETCH_START' });

 try {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 dispatch({ type: 'FETCH_SUCCESS', payload: posts });
 } catch (error) {
 dispatch({ type: 'FETCH_ERROR', payload: error.message });
 }
 }, []);

 useEffect(
 function () {
 fetchPosts();

Chapter 12 317

 },
 [fetchPosts]
);

 return httpState;
}

The only thing that changed in this code snippet is the last line of the useFetch function. With return
httpState, the state managed by useReducer() (and therefore by the httpReducer function) is re-
turned by the custom Hook.

With that first issue fixed, the next step is to also make the Hook more reusable.

Improving Reusability by Accepting an Input Parameter
To fix the second problem (i.e., the hardcoded URL), a parameter should be added to useFetch:

// httpReducer function and initial state did not change, hence omitted here
function useFetch(url) {
 const [httpState, dispatch] = useReducer(
 httpReducer,
 initialHttpState
);

 const fetchPosts = useCallback(async function fetchPosts() {
 dispatch({ type: 'FETCH_START' });

 try {
 const response = await fetch(url);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 dispatch({ type: 'FETCH_SUCCESS', payload: posts });
 } catch (error) {
 dispatch({ type: 'FETCH_ERROR', payload: error.message });
 }
 }, [url]);

 useEffect(
 function () {

Building Custom React Hooks318

 fetchPosts();
 },
 [fetchPosts]
);

 return httpState;
}

In this snippet, the url parameter was added to useFetch. This parameter value is then used inside
the try block when calling fetch(url). Please note that url was also added as a dependency to the
useCallback() dependencies array.

Since useCallback() is wrapped around the fetching function (to prevent infinite loops by useEffect()),
any external values used inside of useCallback() must be added to its dependencies array. Since url is
an external value (meaning it’s not defined inside of the wrapped function), it must be added. This also
makes sense logically: if the url parameter were to change (i.e., if the component that uses useFetch
changes it), a new HTTP request should be sent.

This final version of the useFetch Hook can now be used in all components to send HTTP requests to
different URLs and use the HTTP state values as needed by the components.

For example, the App component can use useFetch like this:

import BlogPosts from './components/BlogPosts.jsx';
import useFetch from './hooks/use-fetch.js';

function App() {
 const { data, isLoading, error } = useFetch(
 'https://jsonplaceholder.typicode.com/posts'
);

 return (
 <>
 <header>
 <h1>Complex State Blog</h1>
 </header>
 {isLoading && <p>Loading...</p>}
 {error && <p>{error}</p>}
 {data && <BlogPosts posts={data} />}
 </>
);
}

export default App;

Chapter 12 319

The component imports and calls useFetch() (with the appropriate URL as an argument) and uses
object destructuring to get the data, isLoading, and error properties from the httpState object.
These values are then used in the JSX code.

Of course, the useFetch Hook could also return a pointer to the fetchPosts function (in addition to
httpState) to allow components such as the App component to manually trigger a new request, as
shown here:

// httpReducer function and initial state did not change, hence omitted here
function useFetch(url) {
 const [httpState, dispatch] = useReducer(
 httpReducer,
 initialHttpState
);

 const fetchPosts = useCallback(async function fetchPosts() {
 dispatch({ type: 'FETCH_START' });

 try {
 const response = await fetch(url);

 if (!response.ok) {
 throw new Error('Failed to fetch posts.');
 }

 const posts = await response.json();

 dispatch({ type: 'FETCH_SUCCESS', payload: posts });
 } catch (error) {
 dispatch({ type: 'FETCH_ERROR', payload: error.message });
 }
 }, [url]);

 useEffect(
 function () {
 fetchPosts();
 },
 [fetchPosts]
);

 return [httpState, fetchPosts];
}

Building Custom React Hooks320

In this example, the return statement was changed. Instead of returning just httpState, useFetch
now returns an array that contains the httpState object and a pointer to the fetchPosts function.
Alternatively, httpState and fetchPosts could have been merged into an object (instead of an array).

In the App component, useFetch could now be used like this:

import BlogPosts from './components/BlogPosts.jsx';
import useFetch from './hooks/use-fetch.js';

function App() {
 const [{ data, isLoading, error }, fetchPosts] = useFetch(
 'https://jsonplaceholder.typicode.com/posts'
);

 return (
 <>
 <header>
 <h1>Complex State Blog</h1>
 <button onClick={fetchPosts}>Load Posts</button>
 </header>
 {isLoading && <p>Loading...</p>}
 {error && <p>{error}</p>}
 {data && <BlogPosts posts={data} />}
 </>
);
}

export default App;

The App component uses array and object destructuring combined to extract the returned values (and
the values nested in the httpState object). A newly added <button> element is then used to trigger
the fetchPosts function.

This example effectively shows how custom Hooks can lead to much leaner component functions by
allowing easy logic reuse, with or without state or side effects.

In addition, Hooks can also enable some interesting patterns—for example, related to React’s Context
API.

Using Custom Hooks for Context Access
As hinted in the previous chapter, in the Outsourcing Context Logic into Separate Components section,
you can use custom Hooks to improve the process of consuming context values in components.

Chapter 12 321

For example, if you provide some context named BookmarkContext (e.g., via a <BookmarkContextProvider>
component), you can access this context value inside components like this:

import { use } from 'react';

import BookmarkContext from '../../store/bookmark-context.jsx';

function BookmarkSummary() {
 const bookmarkCtx = use(BookmarkContext);

 // other component code, including returned JSX code
}

However, instead of directly accessing the context value like this, you could also build the following
custom Hook (e.g., stored in a store/use-bookmark-context.js file):

import { use } from 'react';

import BookmarkContext from './bookmark-context.jsx';

function useBookmarkContext() {
 const bookmarkCtx = use(BookmarkContext);

 return bookmarkCtx;
}
export default useBookmarkContext;

But, of course, this Hook doesn’t really provide any advantages compared to directly consuming the
context value in a component via use().

That changes once you enrich this custom Hook with more useful logic—for example, with error
handling if it’s used in a place where the context is not available:

function useBookmarkContext() {
 const bookmarkCtx = use(BookmarkContext);

 if(!bookmarkCtx) {
 throw new Error('BookmarkContext must be provided!')
 }

 return bookmarkCtx;
}

Building Custom React Hooks322

This Hook can then be used in your components to get hold of the context value like this:

import useBookmarkContext from '../../store/use-bookmark-context.js';

function BookmarkSummary() {
 const bookmarkCtx = useBookmarkContext();

 // other component code, including returned JSX code
}

This therefore is not just another example of a custom Hook, but also a common pattern you should
know. It’s a pattern that’s used in many React projects since it ensures that you don’t accidentally try
to use the context value in a place where it’s not accessible (i.e., in a component that’s not wrapped
by BookmarkContextProvider).

Of course, it’s not a pattern you must use, though. But it’s something you could consider using to get
an early error if you’re trying to access your context in the wrong place. If you’re distributing a library
that exposes some context, it’s an especially helpful pattern since it warns your library users in case
they forget to provide the context.

Summary and Key Takeaways
•	 You can create custom Hooks to outsource and reuse logic that relies on other built-in or

custom Hooks.
•	 Custom Hooks are regular JavaScript functions with names that start with use.
•	 Custom Hooks can call any other Hooks.
•	 Therefore, custom Hooks can, for example, manage state or perform side effects.
•	 All components can use custom Hooks by simply calling them like any other (built-in) Hooks.
•	 When multiple components use the same custom Hook, every component receives its own

“instance” (i.e., its own state value, etc.).
•	 Inside custom Hooks, you can accept any parameter values and return any values of your choice.

What’s Next?
Custom Hooks are a key React feature since they help you to write leaner components and reuse
(stateful) logic across them. Especially when building more complex React apps (consisting of dozens
or even hundreds of components), custom Hooks can lead to tremendously more manageable code.

Combined with components, props, state (via useState() or useReducer()), side effects, and all the
other concepts covered in this and previous chapters, you now have a very solid foundation that allows
you to build production-ready React apps. Therefore, you’re now prepared to dive into more advanced
React concepts as well as crucial third-party packages that you should know about.

For example, most React apps don’t just consist of one single page—instead, at least on most websites,
users should be able to switch between multiple pages. For example, an online shop has a list of
products, product detail pages, a shopping cart page, and many other pages.

Chapter 12 323

The next chapter will therefore explore how you can build such multipage apps with React and the
popular React Router third-party package.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/12-custom-hooks/exercises/questions-
answers.md:

1.	 What is the definition of a custom Hook?
2.	 Which special feature can be used inside a custom Hook?
3.	 What happens when multiple components use the same custom Hook?
4.	 How can custom Hooks be made more reusable?

Apply What You Learned
Apply your knowledge about custom Hooks.

Activity 12.1: Build a Custom Keyboard Input Hook
In this activity, your task is to refactor a provided component such that it’s leaner and no longer con-
tains any state or side-effect logic. Instead, you should create a custom Hook that contains that logic.
This Hook could then potentially be used in other areas of the React application as well.

Once you have downloaded the code and run npm install in the project folder to install all required
dependencies, you can start the development server via npm run dev. As a result, upon visiting
localhost:5173, you should see the following user interface:

Figure 12.3: The running starting project

Note

You can find the starting code for this activity at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/12-custom-hooks/activities/practice-1-
start. When downloading this code, you’ll always download the entire repository. Make
sure to then navigate to the subfolder with the starting code (activities/practice-1-
start, in this case) to use the right code snapshot.

The provided project also uses many features covered in earlier chapters. Take your time
to analyze it and understand the provided code. This is a great practice and allows you to
see many key concepts in action.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/12-custom-hooks/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/12-custom-hooks/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/12-custom-hooks/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/activities/practice-1-start

Building Custom React Hooks324

To complete the activity, the solution steps are as follows:

1.	 Create a new custom Hook file (e.g., in the src/hooks folder) and create a Hook function in
that file.

2.	 Move the side effect and state management logic into that new Hook function.
3.	 Make the custom Hook more reusable by accepting and using a parameter that controls which

keys are allowed.
4.	 Return the state managed by the custom Hook.
5.	 Use the custom Hook and its returned value in the App component.

The user interface should be the same once you have completed the activity, but the code of the App
component should change. After finishing the activity, App should contain only this code:

function App() {
 const pressedKey = useKeyEvent(['s', 'c', 'p']); // this is your Hook!

 let output = '';

 if (pressedKey === 's') {
 output = '';
 } else if (pressedKey === 'c') {
 output = '';
 } else if (pressedKey === 'p') {
 output = '';
 }

 return (
 <main>
 <h1>Press a key!</h1>
 <p>
 Supported keys: <kbd>s</kbd>, <kbd>c</kbd>, <kbd>p</kbd>
 </p>
 <p id="output">{output}</p>
 </main>
);
}

Note

All code files used for this activity, and an example solution, can be found at https://
github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-
hooks/activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/12-custom-hooks/activities/practice-1

13
Multipage Apps with React Router

Introduction
Having worked through the first twelve chapters of this book, you should now know how to build React
components and web apps, as well as how to manage components and app-wide state, and how to
share data between components (via props or context).

But even though you know how to compose a React website from multiple components, all these
components are on the same single website page. Sure, you can display components and content
conditionally, but users will never switch to a different page. This means that the URL path will never
change; users will always stay on your-domain.com. Also, at this point in time, your React apps don’t
support any paths such as your-domain.com/products or your-domain.com/blog/latest.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Build multipage single-page applications (and understand why this is not an oxy-
moron)

•	 Use the React Router package to load different React components for different
URL paths

•	 Create static and dynamic routes (and understand what routes are in the first place)
•	 Navigate the website via both links and programmatic commands
•	 Build nested page layouts

Note

Uniform Resource Locators (URLs) are references to web resources. For example, https://
academind.com/courses is a URL that points to a specific page of the author’s website.
In this example, academind.com is the domain name of the website and /courses is the
path to a specific website page.

https://academind.com/courses
https://academind.com/courses

Multipage Apps with React Router326

For React apps, it might make sense that the path of the loaded website never changes. After all, in
Chapter 1, React – What and Why, you learned that you build single-page applications (SPAs) with React.

But even though it might make sense, it’s also quite a serious limitation.

One Page Is Not Enough
Having just a single page means that complex websites that would typically consist of multiple pages
(e.g., an online shop with pages for products, orders, and more) become quite difficult to build with
React. Without multiple pages, you have to fall back to state and conditional values to display different
content on the screen.

But without changing URL paths, your website visitors can’t share links to anything but the starting
page of your website. Also, any conditionally loaded content will be lost when a new visitor visits that
starting page. That will also be the case if users simply reload the page they’re currently on. A reload
fetches a new version of the page, and so any state (and therefore user interface) changes are lost.

For these reasons, you absolutely need a way of including multiple pages (with different URL paths) in
a single React app for most React websites. Thanks to modern browser features and a highly popular
third-party package, that is indeed possible (and the default for most React apps).

Via the React Router package, your React app can listen to URL path changes and display different com-
ponents for different paths. For example, you could define the following path-component mappings:

•	 <domain>/ => <Home /> component is loaded.
•	 <domain>/products => <ProductList /> component is loaded.
•	 <domain>/products/p1 => <ProductDetail /> component is loaded.
•	 <domain>/about => <AboutUs /> component is loaded.

Technically, it will still be a SPA because there’s still only one HTML page being sent to website users.
But in that single-page React app, different components are rendered conditionally by the React Router
package based on the specific URL paths that are being visited. As the developer of the app, you don’t
have to manually manage this kind of state or render content conditionally—React Router will do it for
you. In addition, your website is able to handle different URL paths, and therefore, individual pages
can be shared or reloaded.

Getting Started with React Router and Defining Routes
React Router is a third-party React library that can be installed in any React project. Once installed,
you can use various components in your code to enable the aforementioned features.

Inside your React project, the package is installed via this command:

npm install react-router-dom

Once installed, you can import and use various components (and Hooks) from that library.

Chapter 13 327

To start supporting multiple pages in your React app, you need to set up routing by going through
the following steps:

1.	 Create different components for your different pages (e.g., Dashboard and Orders components).
2.	 Use the createBrowserRouter() function and the RouterProvider component from the React

Router library to enable routing and define the routes that should be supported by the React app.

In this context, the term routing refers to the React app being able to load different components for
different URL paths (e.g., different components for the / and /orders paths). A route is a definition
that’s added to the React app that defines the URL path for which a predefined JSX snippet should be
rendered (e.g., the Orders component should be loaded for the /orders path).

In an example React app that contains Dashboard and Orders components, and wherein the React
Router library was installed via npm install, you can enable routing and navigation between these
two components by editing the root component (in src/App.jsx) like this:

import {
 createBrowserRouter,
 RouterProvider
} from 'react-router-dom';

import Dashboard from './routes/Dashboard.jsx';
import Orders from './routes/Orders.jsx';

const router = createBrowserRouter([
 { path: '/', element: <Dashboard /> },
 { path: '/orders', element: <Orders /> }
]);

function App() {
 return <RouterProvider router={router} />;
}

export default App;

Note

You can find the complete example code on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/01-
getting-started-with-routing.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/01-getting-started-with-routing
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/01-getting-started-with-routing
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/01-getting-started-with-routing

Multipage Apps with React Router328

In the preceding code snippet, React Router’s createBrowserRouter() function is called to create a
router object that contains the application’s route configuration (a list of available routes). The array
passed to createBrowserRouter() contains route definition objects, where every object defines a path
for which the route should be matched and an element that should be rendered.

React Router’s RouterProvider component is then used to set the router configuration and define a
place for the active route elements to be rendered.

You can think of the <RouterProvider /> element being replaced with the content defined via the
element property once a route becomes active. Therefore, the positioning of the RouterProvider
component matters. In this case (and probably in most React apps), it’s the root application compo-
nent—i.e., React Router, that should control the entire application component tree.

If you run the provided example React app (via npm run dev), you’ll see the following output on the
screen:

Figure 13.1: The Dashboard component content is loaded

The content of the Dashboard component is displayed on the screen if you visit localhost:5173. Please
note that the visible page content is not defined in the App component (in the code snippet shared pre-
viously). Instead, only two route definitions were added: one for the / path (i.e., for localhost:5173/
or just localhost:5173, without the trailing forward slash—it’s handled in the same way) and one for
the /orders path (localhost:5173/orders).

Note

localhost is a local address that’s typically used for development. When you deploy your
React app (i.e., you upload it to a web server), you will receive a different domain—or assign
a custom domain. Either way, it will not be localhost after deployment.

The part after localhost (:5173) defines the network port to which the request will be sent.
Without the additional port information, ports 80 or 443 (as the default HTTP(S) ports)
are used automatically. During development, however, these are not the ports you want.
Instead, you would typically use ports such as 5173, 8000, or 8080 as these are normally
unoccupied by any other system processes and hence can be used safely. Projects created
via Vite typically use port 5173.

Chapter 13 329

Since localhost:5173 is loaded by default (when running npm run dev), the first route definition ({
path: '/', element: <Dashboard /> }) becomes active. This route is active because its path ('/')
matches the path of localhost:5173 (since this is the same as localhost:5173/).

As a result, the JSX code defined via element is rendered in place of the <RouterProvider> component
by React Router. In this case, this means that the content of the Dashboard component is displayed
because the element property value of this route definition is <Dashboard />. It is quite common to
use single components (such as <Dashboard />, in this example), but you could set any JSX content
as a value for the element property.

In the preceding example, no complex page is displayed. Instead, only some text shows up on the
screen. This will change later in this chapter, though.

But it gets interesting if you manually change the URL from just localhost:5173 to localhost:5173/
orders in the browser address bar. In any of the previous chapters, this would not have changed
the page content. But now, with routing enabled and the appropriate routes being defined, the page
content does change, as shown:

Figure 13.2: For /orders, the content of the Orders component is displayed

Once the URL changes, the content of the Orders component is displayed on the screen. It’s again just
some basic text in this first example, but it shows that different code is rendered for different URL paths.

However, this basic example has a major flaw (besides the quite boring page content). Right now, users
must enter URLs manually. But, of course, that’s not how you typically use websites.

Adding Page Navigation
To allow users to switch between different website pages without editing the browser address bar
manually, websites normally contain links, typically added via the <a> HTML element (the anchor
element), like this:

Past Orders

For this example, on-page navigation could therefore be added by modifying the Dashboard compo-
nent code like this:

function Dashboard() {
 return (

Multipage Apps with React Router330

 <>
 <h1>The "Dashboard" route component</h1>
 <p>Go to the Orders page.</p>
 {/* <p> elements omitted */}
 </>
);
}

export default Dashboard;

In this code snippet, a link to the /orders route has been added. Website visitors therefore see this
page now:

Figure 13.3: A navigation link was added

When website users click this link, they are therefore taken to the /orders route and the content of
the Orders component is displayed on the screen.

This approach works but has a major flaw: the website is reloaded every time a user clicks the link.
You can tell that it’s reloaded because the browser’s refresh icon changes to a cross (briefly) whenever
you click a link.

This happens because the browser sends a new HTTP request to the server whenever a link is clicked.
Even though the server always returns the same single HTML page, the page is reloaded during that
process (because of the new HTTP request that was sent).

While that’s not a problem on this simple demo page, it would be an issue if you had some shared state
(e.g., app-wide state managed via context) that should not be reset during a page change. In addition,
every new request takes time and forces the browser to download all website assets (e.g., script files)
again. Even though those files might be cached, this is an unnecessary step that may impact website
performance.

The following, slightly adjusted, example App component illustrates the state-resetting problem:

import { useState } from 'react';
import {

Chapter 13 331

 createBrowserRouter,
 RouterProvider
} from 'react-router-dom';

import Dashboard from './routes/Dashboard.jsx';
import Orders from './routes/Orders.jsx';

const router = createBrowserRouter([
 { path: '/', element: <Dashboard /> },
 { path: '/orders', element: <Orders /> },
]);

function App() {
 const [counter, setCounter] = useState(0);

 function handleIncCounter() {
 setCounter((prevCounter) => prevCounter + 1);
 }

 return (
 <>
 <p>
 <button onClick={handleIncCounter}>Increase Counter</button>
 </p>
 <p>Current Counter: {counter}</p>
 <RouterProvider router={router} />
 </>
);
}

export default App;

In this example, a simple counter was added to the App component. Since <RouterProvider> is ren-
dered in that same component, below the counter, the App component should not be replaced when
a user visits a different page (instead, it’s <RouterProvider> that should be replaced—not the entire
App component JSX code).

Note

The code for this example can be found at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/13-routing/examples/03-naive-navigation-
problem.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/03-naive-navigation-problem
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/03-naive-navigation-problem
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/03-naive-navigation-problem

Multipage Apps with React Router332

At least, that’s the theory. But, as you can see in the following screenshot, the counter state is lost
whenever any link is clicked:

Figure 13.4: The counter state is reset when switching the page

In the screenshot, you can see that the counter is initially set to 3 (because the button was clicked
thrice). After navigating from Dashboard to the Orders page (via clicking the Orders page link), the
counter changes to 0.

That happens because the page is reloaded due to the HTTP request that’s sent by the browser.

To work around this issue and avoid this unintended page reload, you must prevent the browser’s
default behavior. Instead of sending a new HTTP request, the browser URL address should just be
updated (from localhost:5173 to localhost:5173/orders) and the target component (Orders) should
be loaded. Therefore, to the website user, it would seem as if a different page was loaded. But behind
the scenes, it’s just the page document (the DOM) that was updated.

Chapter 13 333

Thankfully, you don’t have to implement the logic for this on your own. Instead, the React Router
library exposes a special Link component that should be used instead of the anchor <a> element.

To use this new component, the code in src/routes/Dashboard.jsx must be adjusted like this:

import { Link } from 'react-router-dom';

function Dashboard() {
 return (
 <>
 <h1>The "Dashboard" route component</h1>
 <p>Go to the <Link to="/orders">Orders page</Link>.</p>
 <p>
 This component could display the user dashboard
 of some web shop.
 </p>
 <p>It's just a dummy example here, but you get the point.</p>
 <p>
 It's worth noting, that it's a regular React component
 that's activated by React Router because of the
 active route configuration.
 </p>
 </>
);
}

export default Dashboard;

Inside this updated example, the new Link component is used. That component requires a to prop,
which is used to define the URL path that should be loaded.

By using this component in place of the <a> anchor element, the counter state is no longer reset. This
is because React Router now prevents the browser’s default behavior (i.e., the unintended page reload
described above) and displays the correct page content.

Under the hood, the Link component still renders the built-in <a> element. But React Router controls
it and implements the behavior described above.

Note

The code for this example can be found at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/13-routing/examples/04-react-router-
navigation.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/04-react-router-navigation
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/04-react-router-navigation
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/04-react-router-navigation

Multipage Apps with React Router334

The Link component is therefore the default component that should be used for internal links. For
external links, the standard <a> element should be used instead since the link leads away from the
website, hence there is no state to preserve or page reload to prevent.

Working with Layouts & Nested Routes
Most websites require some form of page-wide navigation (and hence navigation links) or other page
sections that should be shared across some or all routes.

Consider the previous example website with the routes / and /orders. The example website would
also benefit from having a top navigation bar that allows users to switch between the starting page
(i.e., the Dashboard route) and the Orders page.

Therefore, App.jsx could be adjusted to have a top navigation bar inside a <header> above
<RouterProvider>:

import {
 createBrowserRouter,
 RouterProvider,
 Link
} from 'react-router-dom';

import Dashboard from './routes/Dashboard.jsx';
import Orders from './routes/Orders.jsx';

const router = createBrowserRouter([
 { path: '/', element: <Dashboard /> },
 { path: '/orders', element: <Orders /> },
]);

function App() {
 return (
 <>
 <header>
 <nav>

 <Link to="/">My Dashboard</Link>

 <Link to="/orders">Past Orders</Link>

 </nav>

Chapter 13 335

 </header>
 <RouterProvider router={router} />
 </>
);
}

export default App;

But if you try to run this application, you’ll see a blank page and encounter an error message in the
JavaScript console in the browser developer tools.

Figure 13.5: React Router seems to complain about something

The error message is a bit cryptic, but the problem is that the above code tries to use <Link> outside
of a component controlled by React Router.

Only components loaded via <RouterProvider> are controlled by React Router, hence React Router fea-
tures like its Link component can only be used in route components (or their descendent components).

Therefore, setting up the main navigation inside of the App component (which is not loaded by React
Router) does not work.

To wrap or enhance multiple route components with some shared component and JSX markup, you
must define a new route that wraps the existing routes. Such a route is also sometimes called a layout
route since it can be used to provide some shared layout. The routes wrapped by this route would be
called nested routes.

Multipage Apps with React Router336

A layout route is defined like any other route inside the route definitions array. It then becomes a
layout route by wrapping other routes via a special children property that’s accepted by React Router.
That children property receives an array of nested routes—child routes to the wrapping parent route.

Here’s the adjusted route definition code for this example app:

import Root from './routes/Root.jsx';
import Dashboard from './routes/Dashboard.jsx';
import Orders from './routes/Orders.jsx';

const router = createBrowserRouter([
 {
 path: '/',
 element: <Root />,
 children: [
 { index: true, element: <Dashboard /> },
 { path: '/orders', element: <Orders /> },
],
 },
]);

In this updated code snippet, a new root layout route is defined—a route that registers the existing
routes (the Dashboard and Orders components) as child routes. This setup therefore allows the Root
component to be active simultaneously to the Dashboard or Orders route component.

You might also note that the Dashboard route no longer has a path. Instead, it now has an index
property, which is set to true. That index property is a property that can be used when working with
nested routes. It tells React Router which nested route to activate (and therefore which component to
load) if the parent route path is matched exactly.

In this example, when the / path is active (i.e., if a user visits <domain>/), the Root and Dashboard
components will be rendered. For <domain>/orders, Root and Orders would become visible.

The Root component is a newly added component in this example. It’s a standard component (like
Dashboard or Orders) with one special feature: it defines the place where the child route components
should be inserted via a special Outlet component that’s provided by React Router:

import { Link, Outlet } from 'react-router-dom';

function Root() {
 return (
 <>
 <header>
 <nav>

Chapter 13 337

 <Link to="/">My Dashboard</Link>

 <Link to="/orders">Past Orders</Link>

 </nav>
 </header>
 <Outlet />
 </>
);
}

export default Root;

The <Outlet /> placeholder is needed since React Router must know where to render the route
components of the routes passed to the children property.

Since the Root component itself is also rendered by React Router, it now is a component that has
access to the <Link> tag. Therefore, this Root component can be used to share common markup (like
the navigation <header>) across all nested routes.

Figure 13.6: A shared navigation bar is displayed at the top (for all routes)

Note

You can find the complete example code on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/05-
layouts-nested-routes.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/05-layouts-nested-routes
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/05-layouts-nested-routes
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/05-layouts-nested-routes

Multipage Apps with React Router338

Hence, nested routes and layout routes (or wrapper routes) are crucial features offered by React Router.

It’s also worth noting that you can add as many levels of route nesting as needed by your application—
you’re not restricted to having just one layout route that wraps child routes.

From Link to NavLink
In a shared navigation, as set up in the previous chapter, you often want to highlight the link that led
to the currently active page. For example, if a user clicked the Past Orders link (and hence navigates
to /orders), that link should change its appearance (e.g., its color).

Consider the example from previously (Figure 13.6)—there, in the top navigation bar, it’s not imme-
diately obvious whether the user is on the Dashboard page or the Orders page. Of course, the URL
address and the main page content do change, but the navigation items don’t adjust visually.

To prove this point, compare the previous screenshot to the following one:

Figure 13.7: The highlighted “Past Orders” navigation link is underlined and changes its color

In this version of the website, it’s immediately clear that the user is on the "Orders" page since the
Past Orders navigation link is highlighted. It’s subtle things such as this that make websites more
usable and can ultimately lead to higher user engagement.

But how can this be achieved?

To do this, you would not use the Link component, but instead, a special alternative component offered
by react-router-dom: the NavLink component:

import { NavLink, Outlet } from 'react-router-dom';

function Root() {
 return (
 <>
 <header>
 <nav>

Chapter 13 339

 <NavLink to="/">My Dashboard</NavLink>

 <NavLink to="/orders">Past Orders</NavLink>

 </nav>
 </header>
 <Outlet />
 </>
);
}

export default Root;

The NavLink component is used pretty much like the Link component. You wrap it around some text
(the link’s caption), and you define the target path via the to prop. However, the NavLink component
has some extra styling-related features the regular Link component does not have.

To be precise, the NavLink component by default applies a CSS class called active to the rendered
anchor element when the link is active.

Figure 13.8: The rendered <a> element received an “active” CSS class

In case you want to apply a different CSS class name or inline styles when a link becomes active,
NavLink also allows you to do that. Because NavLink's className and style props behave slightly
differently than they do on other elements. Besides accepting string values (className) or style ob-
jects (style), both props also accept functions that will automatically be called by React Router upon
every navigation action. For example, the following code could be used to ensure that a certain CSS
class or style is applied:

<NavLink

Multipage Apps with React Router340

 className={({ isActive }) => isActive ? 'loaded' : ''}
 style={({ isActive }) => isActive ? { color: 'red' } : undefined}>
 Some Link
</NavLink>

In the above code snippet, both className and style take advantage of the function that will be
executed by React Router. This function automatically receives an object as an input argument—an
object that’s created and provided by React Router, and that contains an isActive property. React
Router sets isActive to true if the link leads to the currently active route, and to false otherwise.

You can therefore return any CSS class names or style objects of your choosing in those functions.
React Router will then apply them to the rendered <a> element.

One important note is that NavLink will consider a route to be active if its path matches the current
URL path or if its path starts with the current URL path. For example, if you had a /blog/all-posts
route, a NavLink component that points at just /blog would be considered active if the current route
is /blog/all-posts (because that route path starts with /blog). If you don’t want this behavior, you
can add the special end prop to the NavLink component, as follows:

<NavLink
 to="/blog"
 style={({ isActive }) => isActive ? { color: 'red' } : undefined}
 end>
 Blog
</NavLink>

With this special prop added, this NavLink would only be considered active if the current route is
exactly /blog—for /blog/all-posts, the link would not be active.

An exception from that rule would be links to just /. Since all routes technically start with this “empty
path,” React Router by default only considers <NavLink to="/"> as active if the user is currently on
<domain>/. For other paths (e.g., /orders), <NavLink to="/"> would not be marked as active.

NavLink is always the preferred choice when the styling of a link depends on the currently active route.
For all other internal links, use Link. For external links, <a> is the element of choice.

Route Components versus “Normal” Components
It’s worth mentioning and noting that, in the previous examples, the Dashboard and Orders components
were regular React components. You could use these components anywhere in your React app—not
just as values for the element property of a route definition.

Note

You can find the finished code for this example on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/06-
navlinks.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/06-navlinks
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/06-navlinks
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/06-navlinks

Chapter 13 341

However, the two components are special in that both are stored in the src/routes folder in the
project directory. They are not stored in the src/components folder, which was used for components
throughout this book.

That’s not something you have to do, though. Indeed, the folder names are entirely up to you. These
two components could be stored in src/components. You could also store them in an src/elements
folder. But using src/routes is quite common for components that are exclusively used for routing.
Popular alternatives are src/screens, src/views, and src/pages (again, it is up to you).

If your app includes any other components that are not used as routing elements, you would still store
those in src/components (i.e., in a different path). This is not a hard rule or a technical requirement, but
it does help with keeping your React projects manageable. Splitting your components across multiple
folders makes it easier to quickly understand which components fulfill which purposes in the project.

In the example project mentioned previously, you can, for example, refactor the code such that the
navigation code is stored in a separate component (e.g., a MainNavigation component, stored in src/
components/shared/MainNavigation.jsx). The component file code looks like this:

import { NavLink } from 'react-router-dom';

import classes from './MainNavigation.module.css';

function MainNavigation() {
 return (
 <header className={classes.header}>
 <nav>

 <NavLink
 to="/"
 className={({ isActive }) =>
 isActive ? classes.active : undefined
 }
 end
 >
 My Dashboard
 </NavLink>

 <NavLink
 to="/orders"
 className={({ isActive }) =>
 isActive ? classes.active : undefined
 }

Multipage Apps with React Router342

 >
 Past Orders
 </NavLink>

 </nav>
 </header>
);
}

export default MainNavigation;

In this code snippet, the NavLink component is adjusted to assign a CSS class named active to any
link that belongs to the currently active route. This is required when using CSS Modules since the class
names are changed during the build process, as discussed in Chapter 6, Styling React Apps. Besides that,
it’s essentially the same navigation menu code as that used earlier in this chapter.

This MainNavigation component can then be imported and used in the Root.jsx file like this:

import { Outlet } from 'react-router-dom';

import MainNavigation from '../components/shared/MainNavigation.jsx';

function Root() {
 return (
 <>
 <MainNavigation />
 <Outlet />
 </>
);
}

export default Root;

Importing and using the MainNavigation component leads to a leaner Root component and yet pre-
serves the same functionality as before.

These changes show how you can combine routing components that are only used for routing
(Dashboard and Orders) and components that are used outside of routing (MainNavigation).

Note

You can find the finished code for this example on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/07-
routing-and-normal-cmp.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/07-routing-and-normal-cmp
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/07-routing-and-normal-cmp
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/07-routing-and-normal-cmp

Chapter 13 343

But even with those markup and style improvements, the demo application still suffers from an
important problem: it only supports static, predefined routes. But, for most websites, those kinds of
routes are not enough.

From Static to Dynamic Routes
Thus far, all examples have had two routes: / for the Dashboard component and /orders for the
Orders component. But you can, of course, add as many routes as needed. If your website consists of
20 different pages, you can (and should) add 20 route definitions (i.e., 20 Route components) to your
App component.

On most websites, however, you will also have some routes that can’t be defined manually—because
not all routes and their exact paths are known in advance.

Consider the example from before, enriched with additional components and some dummy data:

Figure 13.9: A list of order items

In the preceding screenshot, Figure 13.9, you can see a list of order items being output on the Past
Orders page (i.e., by the Orders component).

In the underlying code, every order item is wrapped with a Link component so that a separate page
with more details can be loaded for each item:

function OrdersList() {
 return (
 <ul className={classes.list}>
 {orders.map((order) => (

Note

You can find the code for this example on GitHub at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/08-
dynamic-routes-problem. In the code, you’ll notice that many new components and
style files were added. The code does not use any new features, though. It’s just used to
display a more realistic user interface and output some dummy data.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/08-dynamic-routes-problem
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/08-dynamic-routes-problem
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/08-dynamic-routes-problem

Multipage Apps with React Router344

 <li key={order.id}>
 <Link to='/orders'><OrderItem order={order} /></Link>

))}

);
}

In this code snippet, the path for the Link component is set to /orders. However, that’s not the final
value that should be assigned. Instead, this example highlights an important problem: while it’s the
same route and component that should be loaded for every order item (i.e., some component that
displays detailed data about the selected order), the exact content output by that component depends
on which order item was selected. It’s the same route and component with different data.

Outside of routing, you would use props to reuse the same component with different data. But with
routing, it’s not just about the component. You also must support different paths—because the detailed
data for different orders should be loaded via different paths (e.g., /orders/o1, /orders/o2, etc.).
Otherwise, you would again end up with URLs that are not shareable or reloadable.

Therefore, the path must include not only some static identifier (such as /orders) but also a dynamic
value that’s different for every order item. For three order items with id values o1, o2, and o3, the goal
could be to support the /orders/o1, /orders/o2, and /order/o3 paths.

For this reason, the following three route definitions could be added:

{ path: '/orders/o1', element: <OrderDetail id="o1" /> },
{ path: '/orders/o2', element: <OrderDetail id="o2" /> },
{ path: '/orders/o3', element: <OrderDetail id="o3" /> }

But this solution has a major flaw. Adding all these routes manually is a huge amount of work. And
that’s not even the biggest problem. You typically don’t even know all values in advance. In this exam-
ple, when a new order is placed, a new route would have to be added. But you can’t adjust the source
code of your website every time a visitor places an order.

Clearly, then, a better solution is needed. React Router offers that better solution as it supports dy-
namic routes.

Dynamic routes are defined just like other routes, except that, when defining their path values, you
will need to include one or more dynamic path segments with identifiers of your choice.

The OrderDetail route definition therefore looks like this:

{ path: '/orders/:id', element: <OrderDetail /> }

The following three key things have changed:

•	 It’s just one route definition instead of a (possibly) infinite list of definitions.
•	 path contains a dynamic path segment (:id).
•	 OrderDetail no longer receives an id prop.

Chapter 13 345

The :id syntax is a special syntax supported by React Router. Whenever a segment of a path starts
with a colon, React Router treats it as a dynamic segment. That means that it will be replaced with a
different value in the actual URL path. For the /orders/:id route path, the /orders/o1, /orders/o2,
and /orders/abc paths would all match and therefore activate the route.

Of course, you don’t have to use :id. You can use any identifier of your choice. For the preceding
example, :orderId, :order, or :oid would also make sense.

The identifier will help your app access the correct data inside the page component that should be
loaded for the dynamic route (i.e., the OrderDetail route component in the example code snippets
above). That’s why the id prop was removed from OrderDetail in the last code snippet. Since only
one route is defined, only one specific id value could be passed via props. That won’t help. Therefore,
a different way of loading order-specific data must be used.

Extracting Route Parameters
In the previous example, when a website user visits /orders/o1 or /orders/o2 (or the same path
for any other order ID), the OrderDetail component is loaded. This component should then output
more information about the specific order that was selected (i.e., the order whose ID is encoded in
the URL path).

By the way, that’s not just the case for this example; you can think of many other types of websites
as well. You could also have, for example, an online shop with routes for products (/products/p1, /
products/p2, etc.), or a travel blog where users can visit individual blog posts (/blog/post1, /blog/
post2, etc.).

In all these cases, the question is how do you get access to the data that should be loaded for the
specific identifier (e.g., the ID) that’s included in the URL path? Since it’s always the same component
that’s loaded, you need a way of dynamically identifying the order, product, or blog post for which
the detail data should be fetched.

One possible solution would be the usage of props. Whenever you build a component that should be
reusable yet configurable and dynamic, you can use props to accept different values. For example,
the OrderDetail component could accept an id prop and then, inside the component function body,
load the data for that specific order ID.

However, as mentioned in the previous section, this is not a possible solution when loading the com-
ponent via routing. Keep in mind that the OrderDetail component is created when defining the route:

{ path: '/orders/:id', element: <OrderDetail /> }

Since the component is created when defining the route in the App component, you can’t pass in any
dynamic, ID-specific prop values.

Fortunately, though, that’s not necessary. React Router gives you a solution that allows you to extract
the data encoded in the URL path from inside the component that’s displayed on the screen (when
the route becomes active): the useParams() Hook.

Multipage Apps with React Router346

This Hook can be used to get access to the route parameters of the currently active route. Route pa-
rameters are simply the dynamic values encoded in the URL path—id, in the case of this OrderDetail
example.

Inside the OrderDetail component, useParams() can therefore be used to extract the specific order
ID and load the appropriate order data, as follows:

import { useParams } from 'react-router-dom';

import Details from '../components/orders/Details.jsx';
import { getOrderById } from '../data/orders.js';

function OrderDetail() {
 const params = useParams();
 const orderId = params.id; // orderId is "o1", "o2" etc.
 const order = getOrderById(orderId);

 return <Details order={order} />;
}

export default OrderDetail;

As you can see in this snippet, useParams() returns an object that contains all route parameters of
the currently active route as properties. Since the route path was defined as /orders/:id, the params
object contains an id property. The value of that property is then the actual value encoded in the URL
path (e.g., o1). If you choose a different identifier name in the route definition (e.g., /orders/:orderId
instead of /orders/:id), that property name must be used to access the value in the params object
(i.e., access params.orderId).

By using route parameters, you can thus easily create dynamic routes that lead to different data being
loaded. But, of course, defining routes and handling route activation are not that helpful if you do not
have links leading to dynamic routes.

Creating Dynamic Links
As mentioned earlier in this chapter (in the Adding Page Navigation section), website visitors should
be able to click on links that should then take them to the different pages that make up the overall
website—meaning, those links should activate the various routes defined with the help of React Router.

Note

You can find the complete code on GitHub at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/13-routing/examples/09-dynamic-routes.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/09-dynamic-routes
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/09-dynamic-routes

Chapter 13 347

As explained in the Adding Page Navigation and From Link to NavLink sections, for internal links (i.e.,
links leading to routes defined inside the React app), the Link or NavLink components are used.

So, for static routes such as /orders, links are created like this:

<Link to="/orders">Past Orders</Link> // or use <NavLink> instead

When building a link to a dynamic route such as /orders/:id, you can therefore simply create a link
like this:

<Link to="/orders/o1">Past Orders</Link>

This specific link loads the OrderDetails component for the order with the ID o1.

Building the link as follows would be incorrect:

<Link to="/orders/:id">Past Orders</Link>

The dynamic path segment syntax (:id) is only used when defining the route—not when creating a
link. The link has to lead to a specific resource (a specific order, in this case).

However, creating links to specific orders, as shown previously, is not very practical. Just as it wouldn’t
make sense to define all dynamic routes individually (see the From Static to Dynamic Routes section),
it doesn’t make sense to create the respective links manually.

Sticking to the orders example, there is also no need to create links like that as you already have a list
of orders that’s output on one page (the Orders component, in this case). Similarly, you could have a
list of products in an online shop. In all these cases, the individual items (orders, products, etc.) should
be clickable and lead to details pages with more information.

Figure 13.10: A list of clickable order items

Therefore, the links can be generated dynamically when rendering the list of JSX elements. In the
case of the orders example, the code looks like this:

function OrdersList() {
 return (
 <ul className={classes.list}>
 {orders.map((order) => (

Multipage Apps with React Router348

 <li key={order.id}>
 <Link
 to={`/orders/${order.id}`}>
 <OrderItem order={order} />
 </Link>

))}

);
}

In this code example, the value of the to prop is set dynamically equal to a string that includes the
order.id value. Therefore, every list item receives a unique link that leads to a different details page.
Or, to be precise, the link always leads to the same component but with a different order id value,
hence loading different order data.

Navigating Programmatically
In the previous section, as well as earlier in this chapter, user navigation was enabled by adding links
to the website. Indeed, links are the default way of adding navigation to a website. But there are sce-
narios where programmatic navigation is required instead.

Programmatic navigation means that a new page should be loaded via JavaScript code (rather than
using a link). This kind of navigation is typically required if the active page changes in response to
some action—e.g., upon form submission.

If you take the example of form submission, you will normally want to extract and save the submitted
data. But thereafter, the user will sometimes need to be redirected to a different page. For example, it
makes no sense to keep the user on a Checkout page after processing the entered credit card details.
You might want to redirect the user to a Success page instead.

In the example discussed throughout this chapter, the Past Orders page could include an input field
that allows users to directly enter an order ID and load the respective order data after clicking the
Find button.

Note

In this code snippet (which can be found at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/13-routing/examples/10-dynamic-links), the
string is created as a template literal. That’s a default JavaScript feature that simplifies the
creation of strings that include dynamic values.

You can learn more about template literals on MDN at https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Template_literals.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/10-dynamic-links
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/10-dynamic-links
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Chapter 13 349

Figure 13.11: An input field that can be used to quickly load a specific order

In this example, the entered order ID is first processed and validated before the user is sent to the
respective details page. If the provided ID is invalid, an error message is shown instead. The code
looks like this:

import orders, { getOrdersSummaryData } from '../../data/orders.js';
import classes from './OrdersSummary.module.css';

function OrdersSummary() {
 const { quantity, total } = getOrdersSummaryData();

 const formattedTotal = new Intl.NumberFormat('en-US', {
 style: 'currency',
 currency: 'USD',
 }).format(total);

 function findOrderAction(formData) {
 const orderId = formData.get('order-id');
 const orderExists = orders.some((order) => order.id === orderId);

 if (!orderExists) {
 alert('Could not find an order for the entered id.');
 return;
 }
 }

 return (
 <div className={classes.row}>
 <p className={classes.summary}>
 {formattedTotal} | {orders.length} Orders |
 {quantity} Products

Multipage Apps with React Router350

 </p>
 <form className={classes.form} action={findOrderAction}>
 <input
 type="text"
 name="order-id"
 placeholder="Enter order id"
 aria-label="Find an order by id."
 />
 <button>Find</button>
 </form>
 </div>
);
}

export default OrdersSummary;

The code snippet does not yet include the code that will actually trigger the page change, but it does
show how the user input is read and validated.

Therefore, this is a perfect scenario for the use of programmatic navigation. A link can’t be used here
since it would immediately trigger a page change—without allowing you to validate the user input first
(at least not after the link was clicked).

The React Router library also supports programmatic navigation for cases like this. You can import
and use the special useNavigate() Hook to gain access to a navigation function that can be used to
trigger a navigation action (i.e., a page change):

import { useNavigate } from 'react-router-dom';

const navigate = useNavigate();
navigate('/orders');
// programmatic alternative to <Link to="/orders">

Hence, the OrdersSummary component from previously can be adjusted like this to use this new Hook:

function OrdersSummary() {
 const navigate = useNavigate();

 const { quantity, total } = getOrdersSummaryData();

 const formattedTotal = new Intl.NumberFormat('en-US', {
 style: 'currency',
 currency: 'USD',
 }).format(total);

Chapter 13 351

 function findOrderAction(formData) {
 const orderId = formData.get('order-id');
 const orderExists = orders.some((order) => order.id === orderId);

 if (!orderExists) {
 alert('Could not find an order for the entered id.');
 return;
 }

 navigate(`/orders/${orderId}`);
 }
 // returned JSX code did not change, hence omitted
}

It’s worth noting that the value passed to navigate() is a dynamically constructed string. Program-
matic navigation supports both static and dynamic paths.

Redirecting
Thus far, all the explored navigation options (links and programmatic navigation) forward a user to
a specific page.

In most cases, that’s the intended behavior. But in some cases, the goal is to redirect a user instead
of forwarding them.

The difference is subtle but important. When a user is forwarded, they can use the browser’s navi-
gation buttons (Back and Forward) to go back to the previous page or forward to the page they came
from. For redirects, that’s not possible. Whenever a user is redirected to a specific page (rather than
forwarded), they can’t use the Back button to return to the previous page.

Redirecting users can, for example, be useful for ensuring that users can’t go back to a login page
after authenticating successfully.

When using React Router, the default behavior is to forward users. But you can easily switch to redi-
recting by adding the special replace prop to the Link (or NavLink) components, as follows:

<Link to="/success" replace>Confirm Checkout</Link>

Note

The code for this example can be found at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/13-routing/examples/11-programmatic-
navigation.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/11-programmatic-navigation
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/11-programmatic-navigation
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/11-programmatic-navigation

Multipage Apps with React Router352

When using programmatic navigation, you can pass a second, optional argument to the navigate()
function. That second parameter value must be an object that can contain a replace property that
should be set to true if you want to redirect users:

navigate('/dashboard', { replace: true });

Being able to redirect or forward users allows you to build highly user-friendly web applications that
offer the best possible user experience for different scenarios.

Handling Undefined Routes
Previous sections in this chapter have all assumed that you have predefined routes that should be
reachable by website visitors. But what if a visitor enters a URL that’s simply not supported?

For example, the demo website used throughout this chapter supports the /, /orders, and /
orders/<some-id> paths. But it does not support /home, /products/p1, /abc, or any other path that’s
not one of the defined route paths.

To show a custom Not Found page, you can define a “catch all” route with a special path—the * path:

{ path: '*', element: <NotFound /> }

When adding this route to the list of route definitions in the App component, the NotFound component
will be displayed on the screen when no other route matches the entered or generated URL path.

Lazy Loading
In Chapter 10, Behind the Scenes of React and Optimization Opportunities, you learned about lazy loading—a
technique that can be used to load certain pieces of the React application code only when needed.

Code splitting makes a lot of sense if some components will be loaded conditionally and may not be
needed at all. Hence, routing is a perfect scenario for lazy loading. When applications have multiple
routes, some routes may never be visited by a user. Even if all routes are visited, not all the code for all
app routes (i.e., for their components) must be downloaded right at the start when the application loads.
Instead, it makes sense to only download code for individual routes when they actually become active.

Thankfully, React Router has built-in support for lazy loading and route-based code splitting. It pro-
vides a lazy property that can be added to a route definition. That property expects a function that
dynamically imports the lazily loaded file (which contains the component that should be rendered).
React Router then takes care of the rest—for example, you don’t need to wrap Suspense around any
components:

import {
 createBrowserRouter,
 RouterProvider
} from 'react-router-dom';

import Root from './routes/Root.jsx';
import Dashboard from './routes/Dashboard.jsx';

Chapter 13 353

// Removed static imports of Orders.jsx and OrderDetail.jsx

const router = createBrowserRouter([
 {
 path: '/',
 element: <Root />,
 children: [
 { index: true, element: <Dashboard /> },
 {
 path: '/orders',
 lazy: () => import('./routes/Orders.jsx')
 },
 {
 path: '/orders/:id',
 lazy: () => import('./routes/OrderDetail.jsx')
 },
],
 },
]);

function App() {
 return <RouterProvider router={router} />;
}

export default App;

In this example, both the /orders and /orders/:id routes are set up to load their respective compo-
nents lazily.

For the above code to work, there’s one important adjustment you must apply to your route component
files when using this built-in lazy-loading support: you must replace the default component function
export (export default SomeComponent) with a named export where the component function is
named Component.

For example, the Orders component code needs to be changed to look like this:

import OrdersList from '../components/orders/OrdersList.jsx';
import OrdersSummary from '../components/orders/OrdersSummary.jsx';

function Orders() {
 return (
 <>
 <OrdersSummary />
 <OrdersList />

Multipage Apps with React Router354

 </>
);
}

export const Component = Orders; // named export as "Component"

In this code snippet, the Orders component function is exported as Component. This name is required
since React Router looks for a component function named Component when activating a lazy-loaded
route.

As explained in Chapter 10, Behind the Scenes of React and Optimization Opportunities, adding lazy loading
can improve your React application’s performance considerably. You should always consider using
lazy loading, but you should not use it for every route. It would be especially illogical for routes that
are guaranteed to be loaded early, for instance. In the previous example, it would not make too much
sense to lazy load the Dashboard component since that’s the default route (with a path of /).

But routes that are not guaranteed to be visited at all (or at least not immediately after the website is
loaded) are great candidates for lazy loading.

Summary and Key Takeaways
•	 Routing is a key feature for many React apps.
•	 With routing, users can visit multiple pages despite being on an SPA.
•	 The most common package that helps with routing is the React Router library (react-router-

dom).
•	 Routes are defined with the help of the createBrowserRouter() function and the RouterProvider

component (typically in the App component or the main.jsx file, but you can do it anywhere).
•	 Route definition objects are typically set up with a path (for which the route should become

active) and an element (the content that should be displayed) property.
•	 Content and markup can be shared across multiple routes by setting up layout routes—i.e.,

routes wrapping other nested routes.
•	 Users can navigate between routes by manually changing the URL path, by clicking links, or

because of programmatic navigation.
•	 Internal links (i.e., links leading to application routes defined by you) should be created via the

Link or NavLink components, while links to external resources use the standard <a> element.
•	 Programmatic navigation is triggered via the navigate() function, which is yielded by the

useNavigate() Hook.

Note

The code for this example can be found at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/13-routing/examples/12-lazy-loading.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/12-lazy-loading
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/examples/12-lazy-loading

Chapter 13 355

•	 You can define static and dynamic routes: static routes are the default, while dynamic routes
are routes where the path (in the route definition) contains a dynamic segment (denoted by
a colon, e.g., :id).

•	 The actual values for dynamic path segments can be extracted via the useParams() Hook.
•	 You can use lazy loading to load route-specific code only when the route is actually visited by

the user.

What’s Next?
Routing is a feature that’s not supported by React out of the box but still matters for most React ap-
plications. That’s why it’s included in this book and why the React Router library exists. Routing is a
crucial concept that completes your knowledge about the most essential React ideas and concepts,
allowing you to build both simple and complex React applications.

The next chapter builds upon this chapter and dives even deeper into React Router, exploring its data
fetching and manipulation capabilities.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following questions.
You can then compare your answers to the examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/exercises/questions-answers.
md:

1.	 How is routing different from loading content conditionally?
2.	 How are routes defined?
3.	 How should you add links to different routes to your pages?
4.	 How can dynamic routes (e.g., details for one of many products) be added to your app?
5.	 How can dynamic route parameter values be extracted (e.g., to load product data)?
6.	 What’s the purpose of nested routes?

Apply What You Learned
Apply your knowledge about routing to the following activities.

Activity 13.1: Creating a Basic Three-Page Website
In this activity, your task is to create a very basic first draft for a brand-new online shop website. The
website must support three main pages:

•	 A welcome page
•	 A products overview page that shows a list of available products
•	 A product details page, which allows users to explore product details

Final website styling, content, and data will be added by other teams, but you should provide some
dummy data and default styling. You must also add a shared main navigation bar at the top and im-
plement route-based lazy loading.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/exercises/questions-answers.md

Multipage Apps with React Router356

The finished pages should look like this:

Figure 13.12: The welcome page.

Figure 13.13: A page showing some dummy product placeholders

Figure 13.14: The final product details page with some placeholder data and styles

Chapter 13 357

To complete the activity, the solution steps are as follows:

1.	 Create a new React project and install the React Router package.
2.	 Create components (with the content shown in the preceding screenshot) that will be loaded

for the three required pages.
3.	 Enable routing and add the route definitions for the three pages.
4.	 Add a main navigation bar that’s visible for all pages.
5.	 Add all required links and ensure that the navigation bar links reflect whether or not a page

is active.
6.	 Implement lazy loading (for routes where it makes sense).

Note

For this activity, you can, of course, write all CSS styles on your own. But if you want to
focus on the React and JavaScript logic, you can also use the finished CSS file from the
solution at https://github.com/mschwarzmueller/book-react-key-concepts-e2/
blob/13-routing/activities/practice-1/src/index.css.

If you use that file, explore it carefully to ensure you understand which IDs or CSS classes
might need to be added to certain JSX elements of your solution. You can also use the solu-
tion’s dummy data instead of creating your own dummy product data. You will find the data
for this at https://github.com/mschwarzmueller/book-react-key-concepts-e2/
blob/13-routing/activities/practice-1/src/data/products.js.

Note

The full code, and solution, for this activity can be found here: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/activities/
practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/13-routing/activities/practice-1/src/index.css
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/13-routing/activities/practice-1/src/index.css
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/13-routing/activities/practice-1/src/data/products.js
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/13-routing/activities/practice-1/src/data/products.js
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/activities/practice-1

14
Managing Data with React Router

Introduction
In the preceding chapter, you learned how to use React Router to load different components for dif-
ferent URL paths. This is an important feature as it allows you to build multipage websites while still
using React.

Routing is a crucial feature for many web applications, and React Router is therefore a very important
package. But just as most websites need routing, almost all websites need to fetch and manipulate
data. For example, HTTP requests in most websites are sent to load data (such as a list of products or
blog posts) or to mutate data (for example, to create a product or a blog post).

In Chapter 8, Handling Side Effects, you learned that you can use the useEffect() Hook and various
other React features to send HTTP requests from inside a React application. But if you’re using React
Router, you get some new, even more powerful tools for working with data.

This chapter will explore which new features are made available by React Router and how they may
be used to simplify the process of fetching or sending data.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Use React Router to fetch or send data without using useEffect() or useState()
•	 Share data between different routes without using React’s context feature
•	 Update the UI based on the current data submission status
•	 Create page and action routes
•	 Improve the user experience by deferring the loading of non-critical data

Managing Data with React Router360

Data Fetching and Routing Are Tightly Coupled
As mentioned previously, most websites do need to fetch (or send) data, and most websites do need
more than one page. But it’s important to realize that these two concepts are typically closely related.

Whenever a user visits a new page (such as /posts), it’s likely that some data will need to be fetched.
In the case of a /posts page, the required data is probably a list of blog posts that is retrieved from a
backend server. The rendered React component (such as Posts) must therefore send an HTTP request
to the backend server, wait for the response, handle the response (as well as potential errors), and,
ultimately, display the fetched data.

Of course, not all pages need to fetch data. Landing pages, “About Us” pages, and “Terms & Use” pages
probably don’t need to fetch data when a user visits them. Instead, data on those pages is likely to be
static. It might even be included in the source code as it doesn’t change frequently.

But many pages do need to get data from a backend every time they’re loaded—for instance, “Products,”
“News,” “Events,” or other infrequently updated pages like the “User Profile.”

And data fetching isn’t everything. Most websites also contain features that require data submission—
be it a blog post that can be created or updated, product data that’s administered, or a user comment
that can be added. Hence, sending data to a backend is also a very common use case.

And beyond requests, components might also need to interact with other browser APIs, such as
localStorage. For example, user settings might need to be fetched from storage as a certain page loads.

Naturally, all these interactions happen on pages. But it might not be immediately obvious how tightly
data fetching and submission are coupled to routing.

Most of the time, data is fetched when a route becomes active, i.e., when a component (the page
component) is rendered for the first time. Sure, users might also be able to click a button to refresh
the data, but while this is optional, data fetching upon initial page load is almost always required.

And when it comes to sending data, there is also a close connection to routing. At first sight, it’s not
clear how it’s related because, while it makes sense to fetch data upon page load, it’s less likely that
you will need to send some data immediately (except perhaps tracking or analytics data).

But it’s very likely that after sending data, you will want to navigate to a different page, meaning that
it’s actually the other way around, and instead of initiating data fetching as a page loads, you want to
load a different page after sending some data. For example, after an administrator enters some product
data and submits the form, they should typically be redirected to a different page (for example, from
/products/new to the /products page).

The connection between data fetching, submission, and routing can therefore be summarized by the
following points:

•	 Data fetching often should be initiated when a route becomes active (if that page needs data)
•	 After submitting data, the user should often be redirected to another route

Because these concepts are tightly coupled, React Router provides extra features that vastly simplify
the process of working with data.

Chapter 14 361

Sending HTTP Requests without React Router
Working with data is not just about sending HTTP requests. As mentioned in the previous section, you
may also need to store or retrieve data via localStorage or perform some other operation as a page
gets loaded. But sending HTTP requests is an especially common scenario and will therefore be the
main use case considered for the majority of this chapter. Nonetheless, it’s vital to keep in mind that
what you learn in this chapter is not limited to sending HTTP requests.

As you will see, React Router provides various features that help with sending HTTP requests (or using
other data fetching and manipulation APIs), but you can also send HTTP requests (or interact with
localStorage or other APIs) without these features. Indeed, Chapter 8, Handling Side Effects, already
taught you how HTTP requests can be sent from inside React components with the help of useEffect().

When using React Router’s data fetching capabilities, you can get rid of useEffect() and manual
state management.

Loading Data with React Router
With React Router, fetching data can be simplified down to this, shorter, code snippet:

import { useLoaderData } from 'react-router-dom';

function Posts() {
 const loadedPosts = useLoaderData();

 return (
 <main>
 <h1>Your Posts</h1>
 <ul className="posts">
 {loadedPosts.map((post) => (
 <li key={post.id}>{post.title}
))}

 </main>
);
}

export default Posts;

Note

Besides jumping back in this book, you can also revisit how data fetching with useEffect()
works via this code example on GitHub: https://github.com/mschwarzmueller/book-
react-key-concepts-e2/tree/14-routing-data/examples/01-data-fetching-
classic.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/01-data-fetching-classic
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/01-data-fetching-classic
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/01-data-fetching-classic

Managing Data with React Router362

export async function loader() {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);
 if (!response.ok) {
 throw new Error('Could not fetch posts');
 }
 return response;
}

Believe it or not, it really is that much less code than in the examples shown in Chapter 8. Back then,
when using useEffect(), separate state slices had to be managed to handle loading and error states
as well as the received data. Though, to be fair, the content that should be displayed in case of an
error is missing here. It’s in a separate file (which will be shown later), but it would only add three
extra lines of code.

In the preceding code snippet, you see a couple of new features that haven’t been covered yet in the
book. The loader() function and the useLoaderData() Hook are added by React Router. These fea-
tures, along with many others that will be explored throughout this chapter, are made available by
the React Router package.

With that library installed, you can set an extra loader prop on your route definitions. This prop ac-
cepts a function that will be executed by React Router whenever this route (or one of its child routes,
if defined) is activated:

{ path: '/posts', element: <Posts />, loader: () => {...} }

This function can be used to perform any data fetching or other tasks required to successfully display
the page component. The logic for getting that required data can therefore be extracted from the
component and moved into a separate function.

Since many websites have dozens or even hundreds of routes, adding these loader functions inline in
the route definition objects quickly leads to complex and confusing route definitions. For this reason,
you will typically add (and export) the loader() function in the same file that contains the component
that needs the data.

When setting up the route definitions, you can then import the component and its loader function
and use it like this:

import Posts, { loader as postsLoader } from './components/Posts.jsx';

// … other code …

const router = createBrowserRouter([
 { path: '/posts', element: <Posts />, loader: postsLoader }
]);

Chapter 14 363

Assigning an alias (postsLoader, in this example) to the imported loader function is optional but rec-
ommended since you most likely have multiple loader functions from different components, which
would otherwise lead to name clashes.

With this loader defined, React Router will execute the loader() function whenever a route is acti-
vated. To be precise, the loader() function is called before the component function is executed (that
is, before the component is rendered).

Figure 14.1: The Posts component is rendered after the loader is executed

This also explains why the Posts component example at the beginning of this section contained no
code that handled any loading state. There simply is no loading state since a component function is
only executed after its loader has finished (and the data is available). React Router won’t finish the
page transition until the loader() function has finished its job (though, as you will learn toward the
end of this chapter, there is a way of changing this behavior).

The loader() function can perform any operation of your choice (such as sending an HTTP request,
or reaching out to browser storage via the localStorage API). Inside that function, you should return
the data that should be exposed to the component function. It’s also worth noting that the loader()
function can return any kind of data. It may also return a Promise object that then resolves to any
kind of data. In that case, React Router will automatically wait for the Promise to be fulfilled before
executing the related route component function. The loader() function can thus perform both asyn-
chronous and synchronous tasks.

Note

Technically, you don’t need to name your functions loader. You could use any name and
assign them as values for the loader property in the route definition.

But using loader as a function name does not just follow the convention; it also has the
advantage that React Router’s built-in lazy loading support (covered in the previous chapter)
lazy-loads the loader function when needed. It fails to do that if you pick any other name.

Note

It’s important to understand that the loader() function, like all the other code that makes
up your React app, executes on the client side (that is, in the browser of a website visitor).
Therefore, you may perform any action that could be performed anywhere else (for ex-
ample, inside useEffect()) in your React app as well.

You must not try to run code that belongs to the server side. Directly reaching out to a
database, writing to the file system, or performing any other server-side tasks will fail or
introduce security risks, meaning that you might accidentally expose database credentials
on the client side.

Managing Data with React Router364

Getting Access to Loaded Data
Of course, the component that belongs to a loader (that is, the component that’s part of the same
route definition) needs the data returned by the loader. This is why React Router offers a new Hook
for accessing that data: the useLoaderData() Hook.

When called inside a component function, this Hook yields the data returned by the loader that belongs
to the active route. If that returned data is a Promise, React Router (as mentioned earlier) will automat-
ically wait for that Promise to resolve and provide the resolved data when useLoaderData() is called.

The loader() function may also return an HTTP response object (or a Promise resolving to a Response)
object. This is the case in the preceding example because the fetch() function yields a Promise that re-
solves to an object of type Response. In that instance, React Router automatically extracts the response
body and provides direct access to the data that was attached to the response (via useLoaderData()).

useLoaderData() can be called in any component rendered by the currently active route component.
That may be the route component itself (Posts, in the preceding example), but it may also be any
nested component.

For example, useLoaderData() can also be used in a PostsList component that’s included in the
Posts component (which has a loader added to its route definition):

import { useLoaderData } from 'react-router-dom';

function PostsList() {
 const loadedPosts = useLoaderData();

 return (
 <main>
 <h1>Your Posts</h1>
 <ul className="posts">
 {loadedPosts.map((post) => (

Note

If a response should be returned, the returned object must adhere to the standard Response
interface, as defined here: https://developer.mozilla.org/en-US/docs/Web/API/
Response.

Returning responses might be strange at first. After all, the loader() code is still executed
inside the browser (not on a server). Therefore, technically, no request was sent, and no
response should be required (since the entire code is executed in the same environment,
that is, the browser).

For that reason, you can but don’t have to return a response; you may return any kind of
value. React Router just also supports responses as one possible return value type.

https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response

Chapter 14 365

 <li key={post.id}>{post.title}
))}

 </main>
);
}
export default PostsList;

For this example, the Posts component file looks like this:

import PostsList from '../components/PostsList.jsx';

function Posts() {
 return (
 <main>
 <h1>Your Posts</h1>
 <PostsList />
 </main>
);
}

export default Posts;

export async function loader() {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);
 if (!response.ok) {
 throw new Error('Could not fetch posts');
 }
 return response;
}

This means that useLoaderData() can be used in exactly the place where you need the data. The
loader() function can also be defined wherever you want but it must be added to the route where
the data is required.

Note

Depending on the React Router version being used, you might get a warning related to “No
HydrateFallback” element being provided. You can ignore this warning as it only matters
when using server-side rendering.

Managing Data with React Router366

Loading Data for Dynamic Routes
For most websites, it’s unlikely that static, pre-defined routes alone will be sufficient to meet your
needs. For instance, if you created a blogging site with exclusively static routes, you would be limited
to a simple list of blog posts on /posts. To add more details about a selected blog post on routes such
as /posts/1 or /posts/2 (for posts with different id values) you would need to include dynamic routes.

Of course, React Router also supports data fetching with the help of the loader() function for dy-
namic routes:

{
 path: "/posts/:id",
 element: <PostDetails />,
 loader: postDetailsLoader
}

The PostDetails component and its loader function can be implemented like this:

import { useLoaderData } from 'react-router-dom';

function PostDetails() {
 const post = useLoaderData();
 return (
 <div id="post-details">
 <h1>{post.title}</h1>
 <p>{post.body}</p>
 </div>
);
}

export default PostDetails;

export async function loader({ params, request }) {
 console.log(request);
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts/' + params.id
);

Note

You can also explore this code example on GitHub: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/
examples/02-data-fetching-react-router.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/02-data-fetching-react-router
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/02-data-fetching-react-router
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/02-data-fetching-react-router

Chapter 14 367

 if (!response.ok) {
 throw new Error('Could not fetch post for id ' + params.id);
 }
 return response;
}

If it looks very similar to the Posts component in the Loading Data with React Router section, that’s
no coincidence. Because the loader() function works in exactly the same way, there is just one extra
feature being used to get hold of the dynamic path segment value: a params object that’s made avail-
able by React Router.

When adding a loader() function to a route definition, React Router calls that function whenever the
route becomes active, right before the component is rendered. When executing that function, React
Router passes an object that contains extra information as an argument to loader().

This object passed to loader() includes two main properties:

•	 A request property that contains an object with more details about the request that led to the
route activation

•	 A params property that yields an object containing a key-value map of all dynamic route pa-
rameters for the active route

The request object doesn’t matter for this example and will be discussed in the next section. But the
params object contains an id property that carries the id value of the post for which the route is load-
ed. The property is named id because, in the route definition, /posts/:id was chosen as a path. If a
different placeholder name had been chosen, a property with that name would have been available on
params (for example, for /posts/:postId, this would be params.postId). This behavior is similar to
the params object yielded by useParams(), as explained in Chapter 13, Multipage Apps with React Router.

With the help of the params object and the post id, the appropriate post id can be included in the
outgoing request URL (for the fetch() request), and hence the correct post data can be loaded from
the backend API. Once the data arrives, React Router will render the PostDetails component and
expose the loaded post via the useLoaderData() Hook.

Loaders, Requests, and Client-Side Code
In the preceding section, you learned about a request object being provided to the loader() function.
Getting such a request object might be confusing because React Router is a client-side library—all the
code executes in the browser, not on a server. Therefore, no request should reach the React app (as
HTTP requests are sent from the client to the server, not between JavaScript functions on the client side).

Note

You can also explore this code example on GitHub: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/
examples/03-dynamic-routes.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/03-dynamic-routes
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/03-dynamic-routes
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/examples/03-dynamic-routes

Managing Data with React Router368

And, indeed, there is no request being sent via HTTP. Instead, React Router creates a request object via
the browser’s built-in Request interface to use it as a “data vehicle.” This request is not sent via HTTP, but
it’s used as a value for the request property on the data object that is passed to your loader() function.

This request object will be unnecessary in many loader functions, but there are occasional scenarios
in which you can extract useful information from that object—information that might be needed in
the loader to fetch the right data.

For example, you can use the request object and its url property to get access to any search param-
eters (query parameters) that may be included in the currently active page’s URL:

export async function loader({ request }) {
 // e.g. for localhost:5173/posts?sort=desc
 const sortDirection = new URL(request.url).searchParams.get('sort');

 // Fetch sorted posts, based on local 'sort' query param value
 const response = await fetch(
 'https://example.com/posts?sorting=' + sortDirection
);
 return response;
}

In this code snippet, the request value is used to get hold of a query parameter value that’s used in
the React app URL. That value is then used in an outgoing request.

However, it is vital that you keep in mind that the code inside your loader() function, just like all your
other React code, always executes on the client side. If, instead, you want to execute code on a server
(and, for example, fetch data on the server side), you need to use server-side rendering (SSR) or some
React framework that implements SSR, like Next.js. SSR and Next.js will be covered in the next chap-
ter, Chapter 15, Server-side Rendering & Building Fullstack Apps with Next.js, and the chapters thereafter.

Layouts Revisited
React Router supports the concept of layout routes. These are routes that contain other routes and
render those other routes as nested children. As you may recall, this concept was introduced in Chapter
13, Multipage Apps with React Router.

Conveniently, layout routes can also be used for sharing data across nested routes. Consider this
example website:

Note

For more information on the built-in Request interface, visit https://developer.
mozilla.org/en-US/docs/Web/API/Request.

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request

Chapter 14 369

Figure 14.2: A website with a header, a sidebar, and some main content

This website has a header with a navigation bar, a sidebar showing a list of available posts, and a main
area that displays the currently selected blog post.

This example includes two layout routes that are nested into each other:

•	 The root layout route, which includes the top navigation bar that is shared across all pages
•	 A posts layout route, which includes the sidebar and the main content of its child routes (for

example, the details for a selected post)

The route definitions code looks like this:

const router = createBrowserRouter([
 {
 path: '/',
 element: <Root />, // main layout, adds navigation bar
 children: [
 { index: true, element: <Welcome /> },
 {
 path: '/posts',
 element: <PostsLayout />, // posts layout, adds posts sidebar
 loader: postsLoader,
 children: [
 { index: true, element: <Posts /> },
 {
 path: ':id',
 element: <PostDetails />,

Managing Data with React Router370

 loader: postDetailsLoader
 },
],
 },
],
 },
]);

With this setup, both the <Posts /> and the <PostDetails /> components are rendered next to the
sidebar (since the sidebar is part of the <PostsLayout /> element).

The interesting part is that the /posts route (i.e., the layout route) loads the post data, as it has the
postsLoader assigned to it, and so the PostsLayout component file looks like this:

import { Outlet, useLoaderData } from 'react-router-dom';

import PostsList from '../components/PostsList.jsx';

function PostsLayout() {
 const loadedPosts = useLoaderData();
 return (
 <div id="posts-layout">
 <nav>
 <PostsList posts={loadedPosts} />
 </nav>
 <main>
 <Outlet />
 </main>
 </div>
);
}

export default PostsLayout;

export async function loader() {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);
 if (!response.ok) {
 throw new Error('Could not fetch posts');
 }
 return response;
}

Chapter 14 371

Since layout routes are also regular routes, you can add loader() functions and use useLoaderData()
just as you could in any other route. However, because layout routes are activated for multiple child
routes, their data is also displayed for different routes. In the preceding example, the list of blog posts
is always displayed on the left side of the screen, no matter if a user visits /posts or /posts/10:

Figure 14.3: The same layout and data are used for different child routes

In this screenshot, the layout and data used do not change as different child routes are activated. React
Router also avoids unnecessary data re-fetching (for the blog posts list data) as you switch between
child routes. It’s smart enough to realize that the surrounding layout hasn’t changed.

Managing Data with React Router372

Reusing Data across Routes
Layout routes do not just help you share components and markup. They also allow you to load and
share data across a layout route and its child routes.

For example, the PostDetails component (that is, the component that’s rendered for the /posts/:id
route) needs the data for a single post, and that data can be retrieved via a loader attached to the
/posts/:id route:

export async function loader({ params }) {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts/' + params.id
);
 if (!response.ok) {
 throw new Error('Could not fetch post for id ' + params.id);
 }
 return response;
}

This example was discussed earlier in this chapter in the Loading Data for Dynamic Routes section.
This approach is fine, but in some situations, this extra HTTP request can be avoided. For example,
the following route configuration can be simplified, and the extra postDetailsLoader on the child
route can be avoided:

const router = createBrowserRouter([
 {
 path: '/',
 element: <Root />, // main layout, adds navigation bar
 children: [
 { index: true, element: <Welcome /> },
 {
 path: '/posts',
 element: <PostsLayout />, // posts layout, adds posts sidebar
 loader: postsLoader,
 children: [
 { index: true, element: <Posts /> },
 {
 path: ':id',
 element: <PostDetails />,
 loader: postDetailsLoader // can be removed
 },
],
 },

Chapter 14 373

],
 },
]);

In this example, the PostsLayout route already fetches a list of all posts. That layout component is also
active for the PostDetails route. In such a scenario, fetching a single post is unnecessary, since all
the data has already been fetched for the list of posts. Of course, a specific postDetailsLoader loader
for the PostDetails child route would be required if the request for the list of posts (by postsLoader
on the PostsLayout route) didn’t yield all the data required by PostDetails.

But if all the data is available, React Router allows you to tap into the loader data of a parent route
component via the useRouteLoaderData() Hook.

This Hook can be used like this:

const posts = useRouteLoaderData('posts');

useRouteLoaderData() requires a route identifier as an argument. It requires an identifier assigned
to the ancestor route that contains the data that should be reused. You can assign such an identifier
via the id property to your routes as part of the route definitions code:

const router = createBrowserRouter([
 {
 path: '/',
 element: <Root />, // main layout, adds navigation bar
 children: [
 { index: true, element: <Welcome /> },
 {
 path: '/posts',
 id: 'posts', // the id value is up to you
 element: <PostsLayout />, // posts layout, adds posts sidebar
 loader: postsLoader,
 children: [
 { index: true, element: <Posts /> },
 {
 path: ':id',
 element: <PostDetails />, // details loader was removed
 },
],
 },
],
 },
]);

Managing Data with React Router374

The useRouteLoaderData() Hook then returns the same data useLoaderData() yields in that route
to which you added the id. In this example, it would provide a list of blog posts.

In PostDetails, this Hook can therefore be used like this:

import { useParams, useRouteLoaderData } from 'react-router-dom';

function PostDetails() {
 const params = useParams();
 const posts = useRouteLoaderData('posts');
 const post = posts.find((post) => post.id.toString() === params.id);
 return (
 <div id="post-details">
 <h1>{post.title}</h1>
 <p>{post.body}</p>
 </div>
);
}

export default PostDetails;

The useParams() Hook is used to get access to the dynamic route parameter value, and the find()
method is used on the list of posts to identify a single post with a fitting id property. In this example,
you would thus avoid sending an unnecessary HTTP request by reusing data that’s already available.

Therefore, the postDetailsLoader that was part of the /posts/:id route definition can be removed.

Handling Errors
In the first example at the very beginning of this chapter (where the HTTP request was sent with the
help of useEffect()), the code did not just handle the success case but also possible errors. In all the
React Router-based examples since then, error handling has been omitted. Error handling was not
discussed up to this point because, while React Router plays an important role in error handling, it’s
vital to first gain a solid understanding of how React Router works in general and how it helps with
data fetching. But, of course, errors can’t always be avoided and definitely should not be ignored.

Thankfully, handling errors is also very straightforward and easy when using React Router’s data
capabilities. You can set an errorElement property on your route definitions and define the element
that should be rendered when an error occurs:

// ... other imports
import Error from './components/Error.jsx';

const router = createBrowserRouter([
 {
 path: '/',

Chapter 14 375

 element: <Root />,
 errorElement: <Error />,
 children: [
 { index: true, element: <Welcome /> },
 {
 path: '/posts',
 id: 'posts',
 element: <PostsLayout />,
 loader: postsLoader,
 children: [
 { index: true, element: <Posts /> },
 { path: ':id', element: <PostDetails /> },
],
 },
],
 },
]);

This errorElement property can be set on any route definition of your choice, or even multiple route
definitions simultaneously. React Router will render the errorElement of the route closest to the place
where the error was thrown.

In the preceding snippet, no matter which route produced an error, it would always be the root route’s
errorElement that was displayed (since that’s the only route definition with an errorElement). But if
you also added an errorElement to the /posts route, and the :id route produced an error, it would
be the errorElement of the /posts route that was shown on the screen, as follows:

const router = createBrowserRouter([
 {
 path: '/',
 element: <Root />,
 errorElement: <Error />, // for all errors not handled elsewhere
 children: [
 { index: true, element: <Welcome /> },
 {
 path: '/posts',
 id: 'posts',
 element: <PostsLayout />,
 // used if /posts or /posts/:id throws an error
 errorElement: <PostsError />, // handles /posts related errors
 loader: postsLoader,
 children: [
 { index: true, element: <Posts /> },

Managing Data with React Router376

 { path: ':id', element: <PostDetails /> },
],
 },
],
 },
]);

This allows you, the developer, to set up fine-grained error handling.

Inside the component used as a value for the errorElement, you can get access to the error that was
thrown via the useRouteError() Hook:

import { useRouteError } from 'react-router-dom';

function Error() {
 const error = useRouteError();

 return (
 <>
 <h1>Oh no!</h1>
 <p>An error occurred</p>
 <p>{error.message}</p>
 </>
);
}

export default Error;

With this simple yet effective error-handling solution, React Router allows you to avoid managing
error states yourself. Instead, you simply define a standard React element (via the element prop) that
should be displayed when things go right and an errorElement to be displayed if things go wrong.

Onward to Data Submission
Thus far, you’ve learned a lot about data fetching. But as mentioned earlier in this chapter, React Router
also helps with data submission.

Consider the following example component:

function NewPost() {
 return (
 <form id="post-form">
 <p>
 <label htmlFor="title">Title</label>

Chapter 14 377

 <input type="text" id="title" name="title" />
 </p>
 <p>
 <label htmlFor="text">Text</label>
 <textarea id="text" name="text" rows={3} />
 </p>
 <button>Save Post</button>
 </form>
);
}

export default NewPost;

This component renders a <form> element that allows users to enter the details for a new post. Due
to the following route configuration, the component is displayed whenever the /posts/new route
becomes active:

const router = createBrowserRouter([
 {
 path: '/',
 element: <Root />,
 errorElement: <Error />,
 children: [
 { index: true, element: <Welcome /> },
 {
 path: '/posts',
 id: 'posts',
 element: <PostsLayout />,
 loader: postsLoader,
 children: [
 { index: true, element: <Posts /> },
 { path: ':id', element: <PostDetails /> },
 { path: 'new', element: <NewPost /> },
],
 },
],
 },
]);

Without React Router’s data-related features, you might handle form submission like this:

function NewPost() {
 const navigate = useNavigate();

Managing Data with React Router378

 async function submitAction(formData) {
 const enteredTitle = formData.get('title');
 const enteredText = formData.get('text');
 const postData = {
 title: enteredTitle,
 text: enteredText
 };

 await fetch('https://jsonplaceholder.typicode.com/posts', {
 method: 'POST',
 body: JSON.stringify(postData),
 headers: {'Content-Type': 'application/json'}
 });
 navigate('/posts');
 }

 return (
 <form action={submitAction}>
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 <p>
 <label htmlFor="text">Text</label>
 <textarea id="text" rows={3} name="text" />
 </p>
 <button>Save Post</button>

 </form>
);
}

Just as before when fetching data, this requires quite a bit of code and logic to be added to the compo-
nent function. You must manually extract the submitted data, send the HTTP request, and navigate
to a different page after receiving an HTTP response.

In addition, you might also need to manage loading state and potential errors (excluded in the pre-
ceding example).

Again, React Router offers some help. Where a loader() function can be added to handle data loading,
an action() function can be defined to handle data submission.

Chapter 14 379

When using the new action() function, the preceding example component looks like this:

import { Form, redirect } from 'react-router-dom';

function NewPost() {
 return (
 <Form method="post" id="post-form">
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title"/>
 </p>
 <p>
 <label htmlFor="text">Text</label>
 <textarea id="text" rows={3} name="text" />
 </p>
 <button>Save Post</button>
 </Form>
);
}

export default NewPost;

export async function action({ request }) {
 const formData = await request.formData();
 const enteredTitle = formData.get('title');
 const enteredText = formData.get('text');
 const postData = {
 title: enteredTitle,
 text: enteredText
 };
 await fetch('https://jsonplaceholder.typicode.com/posts', {
 method: 'POST',
 body: JSON.stringify(postData),
 headers: { 'Content-Type': 'application/json' },
 });
 return redirect('/posts');
}

This code might be similar in length but it has the advantage of moving all the data submission logic
out of the component function into a special action() function.

Managing Data with React Router380

Besides the addition of the action() function, the example code snippet includes the following im-
portant changes and features:

•	 A <Form> component that’s used instead of <form>.
•	 The method prop is set on the <Form> (to "post").
•	 The submitted data is extracted as FormData by calling request.formData().
•	 The user is redirected via a newly added redirect() function (instead of useNavigate() and

navigate()).

But what are these elements about?

Working with action() and Form Data
Just like loader(), action() is a special function that can be added to route definitions, as follows:

import NewPost, { action as newPostAction } from './components/NewPost.jsx';

// ...

{ path: 'new', element: <NewPost />, action: newPostAction },

With the action prop set on a route definition, the assigned function is automatically called whenever
a <Form> (not <form>!) targeting this route is submitted. Form is a component provided by React Router
that should be used instead of the default <form> element.

Internally, Form uses the default <form> element but prevents the browser default of creating and
sending an HTTP request upon form submission. Instead, React Router creates a FormData object
and calls the action() function defined for the route that’s targeted by the <Form>, passing a request
object, based on the built-in Request interface, to it. The passed request object contains the form
data generated by React Router. Later in this chapter, in the Controlling Which <Form> Triggers Which
Action section, you’ll learn how to control which action() function of which route will be executed
by React Router.

Note

Handling form submissions with the help of “actions” might sound familiar—Chapter 9,
Handling User Input & Forms with Form Actions, discussed a similar concept.

But whereas Chapter 9 discussed a feature built into React (which was not related or de-
pendent on routing), this chapter explores a core concept of React Router.

Ultimately, you can use either approach for handling form submissions. Or you could use
none of the two and instead handle the submit event manually via onSubmit.

But when using routing with React Router, you’ll often end up with cleaner, more concise
code that integrates smoothly with other routing features like redirects when using React
Router’s <Form> component and action() function.

Chapter 14 381

The form data object that is created by calling request.formData() includes all form input values
entered into the submitted form. To be registered, an input element such as <input>, <select>, or
<textarea> must have the name attribute assigned to it. The values set for those name attributes can
later be used to extract the entered data.

The request object (that contains the form data) received by the action() function is created by React
Router when the form is submitted.

The Form component defines the HTTP method of the request object. By setting the Form's method prop
to either "get" (the default) or "post", you control what happens when the form is submitted. When
setting method="get" (or when not setting method at all), a regular URL navigation will occur—just as
if a link to a certain path were clicked. Any entered form values will be encoded as URL search pa-
rameters in that case. To trigger an action() function, <Form>'s method must be set to "post" instead.

However, it’s important to understand that the request is not sent via HTTP since action(), just like
loader() or the component function, still executes in the browser rather than on a server.

The action() function then receives an object with a request property that contains the created
request object with the included form data. This request object can be used to extract the values
entered into the form input fields like this:

export async function action({ request }) {
 const formData = await request.formData();
 const postData = Object.fromEntries(formData);

 // ...
}

The built-in formData() method yields a Promise that resolves to a FormData object that offers a get()
method that can be used to get an entered value by its identifier (that is, by the name attribute value set
on the input element). For example, the value entered into <input name="title"> could be retrieved
via formData.get('title').

Alternatively, you can follow the approach chosen in the preceding code snippet and convert the
formData object to a simple key-value object via Object.fromEntries(formData). This object (postData,
in the preceding example) contains the names set on the form input elements as properties and the
entered values as values for those properties (meaning that postData.title would yield the value
entered in <input name="title">).

Managing Data with React Router382

The extracted data can then be used for any operations of your choice. That could be an extra validation
step or an HTTP request sent to some backend API, where the data may get stored in a database or file:

export async function action({ request }) {
 const formData = await request.formData();
 const postData = Object.fromEntries(formData);
 await fetch('https://jsonplaceholder.typicode.com/posts', {
 method: 'POST',
 body: JSON.stringify(postData),
 headers: { 'Content-Type': 'application/json' },
 });
 return redirect('/posts');
}

Finally, once all intended steps are performed, the action() function must return a value—any val-
ue of any type, but at least null. Not returning anything (i.e., omitting the return statement) is not
allowed. Though, as with the loader() function, you may also return a response, for example, a
redirect response like this:

export async function action({ request }) {
 // action logic …
 return new Response("", {
 status: 302,
 headers: {
 Location: '/posts'
 }
 });
}

Note

React Router also supports the other main HTTP verbs ("patch", "put", and "delete"),
and setting method to one of these verbs will indeed also trigger the action() function.

This can be useful when working with multiple forms that should trigger the same
action(). By using different methods, you can use one single action to run different
code based on the value extracted from request.method inside the action() function.

But it’s worth noting that using methods other than 'get' and 'post' is not in line with
the HTML standard. Therefore, React Router could remove support for these methods
in the future.

Hence, when working with multiple forms that trigger the same action(), a more sta-
ble solution can be to include a hidden input field with a unique identifier (e.g., <input
type="hidden" name="_method" value="DELETE">). This value can then be extracted
and used (e.g., in an if statement) in the action() function.

Chapter 14 383

Indeed, for actions, it’s highly likely that you will want to navigate to a different page once the action
has been performed (e.g., once an HTTP request to an API has been sent). This may be required to
navigate the user away from the data input page to a page that displays all available data entries (for
example, from /posts/new to /posts).

To simplify this common pattern, React Router provides a redirect() function that yields a response
object that causes React Router to switch to a different route. You can therefore return the result of
calling redirect() in your action() function to ensure that the user is navigated to a different page. It’s
the equivalent of calling navigate() (via useNavigate()) when manually handling form submissions.

export async function action({ request }) {
 // action logic …
 return redirect('/posts')
}

In this snippet, React Router’s redirect() function is used instead of manually constructing a Response
object.

Returning Data Instead of Redirecting
As mentioned, your action() functions may return anything. You don’t have to return a response
object. While it is quite common to return a redirect response, you may occasionally want to return
some raw data instead.

One scenario in which you might not want to redirect the user is after validating the user’s input. Inside
the action() function, before sending the entered data to some API, you may wish to validate the
provided values first. If an invalid value (such as an empty title) is detected, a great user experience
is typically achieved by keeping the user on the route with the <Form>. The values entered by the user
shouldn’t be cleared and lost; instead, the form should be updated to present useful validation error
information to the user. This information can be passed from the action() to the component function
so that it can be displayed there (for example, next to the form input fields).

In situations like this, you can return a “normal” value (that is, not a redirect response) from your
action() function:

export async function action({ request }) {
 const formData = await request.formData();
 const postData = Object.fromEntries(formData);

 let validationErrors = [];

 if (postData.title.trim().length === 0) {
 validationErrors.push('Invalid post title provided.')
 }
 if (postData.text.trim().length === 0) {
 validationErrors.push('Invalid post text provided.')

Managing Data with React Router384

 }

 if (validationErrors.length > 0) {
 return validationErrors;
 }

 await fetch('https://jsonplaceholder.typicode.com/posts', {
 method: 'POST',
 body: JSON.stringify(postData),
 headers: { 'Content-Type': 'application/json' },
 });
 return redirect('/posts');
}

In this example, a validationErrors array is returned if the entered title or text values are empty.

Data returned by an action() function can be used in the route component (or any other nested
component) via the useActionData() Hook:

import { Form, redirect, useActionData } from 'react-router-dom';

function NewPost() {
 const validationErrors = useActionData();

 return (
 <Form method="post" id="post-form">
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 <p>
 <label htmlFor="text">Text</label>
 <textarea id="text" name="text" rows={3} />
 </p>

 {validationErrors &&
 validationErrors.map((err) => <li key={err}>{err})}

 <button>Save Post</button>
 </Form>
);
}

Chapter 14 385

useActionData() works a lot like useLoaderData(), but unlike useLoaderData(), it’s not guaranteed to
yield any data. This is because while loader() functions always get called before the route component
is rendered, the action() function only gets called once the <Form> is submitted.

In this example, useActionData() is used to get access to the validationErrors returned by action().
If validationErrors is truthy (that is, is not undefined), the array will be mapped to a list of error
items that are displayed to the user:

Figure 14.4: Validation errors are output below the input fields

The action() function is therefore quite versatile in that you can use it to perform an action and redirect
away as well as to conduct more than one operation and return different values for different use cases.

Controlling Which <Form> Triggers Which Action
Earlier in this chapter, in the section Working with action() and Form Data, you learned that when
<Form> is used instead of <form>, React Router will execute the targeted action() function. But which
action() function is targeted by <Form>?

By default, it’s the action() function assigned to the route that also renders the form (either directly
or via some descendent component). Consider this route definition:

{ path: '/posts/new', element: <NewPost />, action: newPostAction }

With this definition, the newPostAction() function would be triggered whenever any <Form> inside
of the NewPost component (or any nested component) is submitted.

In many cases, this default behavior is exactly what you want. But you can also target action() functions
defined on other routes by setting the action prop on <Form> to the path of the route that contains
the action() that should be executed:

// form rendered in a component that belongs to /posts
<Form method="post" action="/save-data">
 ...
</Form>

Managing Data with React Router386

This form would cause React Router to execute the action belonging to the /save-data route—even
though the <Form> component may be rendered as part of a component that belongs to a different
route (e.g., /posts).

It is worth noting, though, that targeting a different route will lead to a page transition to that route’s
path, even if your action does not return a redirect response. In a later section of this chapter, enti-
tled Behind-the-Scenes Data Fetching and Submission, you will learn how that behavior can be avoided.

Reflecting the Current Navigation Status
After submitting a form, the action() function that’s triggered may need some time to perform all
intended operations. Sending HTTP requests to APIs in particular can take up to a few seconds.

Of course, it’s not a great user experience if the user doesn’t get any feedback about the current data
submission status. It’s not immediately clear if anything happened at all after the submit button was
clicked.

For that reason, you might want to show a loading spinner or update the button caption while the
action() function is running. Indeed, one common way of providing user feedback is to disable the
submit button and change its caption like this:

Figure 14.5: The submit button is grayed out

You can get the current React Router status (that is, whether it’s currently transitioning to another route
or executing an action() function) via the useNavigation() Hook. This Hook provides a navigation
object that contains various pieces of routing-related information.

Most importantly, this object has a state property that yields a string describing the current navigation
status. This property is set to one of the following three possible values:

•	 submitting: If an action() function is currently executing

Chapter 14 387

•	 loading: If a loader() function is currently executing (for example, because of a redirect()
response)

•	 idle: If no action() or loader() functions are currently being executed

You can therefore use this state property to find out whether React Router is currently navigating to
a different page or executing an action(). Hence, the submit button can be updated as shown in the
preceding screenshot via this code:

import {
 Form,
 redirect,
 useActionData,
 useNavigation
} from 'react-router-dom';

function NewPost() {
 const validationErrors = useActionData();

 const navigation = useNavigation();
 const isSubmitting = navigation.state !== 'idle';

 return (
 <Form method="post" id="post-form">
 <p>
 <label htmlFor="title">Title</label>
 <input type="text" id="title" name="title" />
 </p>
 <p>
 <label htmlFor="text">Text</label>
 <textarea id="text" name="text" rows={3} />
 </p>

 {validationErrors &&
 validationErrors.map((err) => <li key={err}>{err})}

 <button disabled={isSubmitting}>
 {isSubmitting ? 'Saving...' : 'Save Post'}
 </button>
 </Form>
);
}

Managing Data with React Router388

In this example, the isSubmitting constant is true if the current navigation state is anything but
'idle'. This constant is then used to disable the submit button (via the disabled attribute) and adjust
the button’s caption.

Submitting Forms Programmatically
In some cases, you won’t want to instantly trigger an action() when a form is submitted—for exam-
ple, if you need to ask the user for confirmation first such as when triggering actions that delete or
update data.

For such scenarios, React Router allows you to submit a form (and therefore trigger an action()
function) programmatically. Instead of using the Form component provided by React Router, you
handle the form submission manually using the default <form> element. As part of your code, you can
then use a submit() function provided by React Router’s useSubmit() Hook to trigger the action()
manually once you’re ready for it.

Consider this example:

import {
 redirect,
 useParams,
 useRouteLoaderData,
 useSubmit,
} from 'react-router-dom';

function PostDetails() {
 const params = useParams();
 const posts = useRouteLoaderData('posts');
 const post = posts.find((post) => post.id.toString() === params.id);

 const submit = useSubmit();

 function handleSubmit(event) {
 event.preventDefault();

 const proceed = window.confirm('Are you sure?');

 if (proceed) {
 submit(
 { message: 'Your submitted data, if needed' },
 {
 method: 'post',
 }

Chapter 14 389

);
 }
 }

 return (
 <div id="post-details">
 <h1>{post.title}</h1>
 <p>{post.body}</p>
 <form onSubmit={handleSubmit}>
 <button>Delete</button>
 </form>
 </div>
);
}

export default PostDetails;

// action must be added to route definition!
export async function action({ request }) {
 const formData = await request.formData();
 console.log(formData.get('message'));
 console.log(request.method);
 return redirect('/posts');
}

In this example, the action() is manually triggered by programmatically submitting data via the
submit() function provided by useSubmit(). This approach is required as it would otherwise be im-
possible to ask the user for confirmation (via the browser’s window.confirm() method).

Because data is submitted programmatically, the default <form> element should be used and the
submit event handled manually. As part of this process, the browser’s default behavior of sending an
HTTP request must also be prevented manually.

Typically, using <Form> instead of programmatic submission is preferable. But in certain situations,
such as the preceding example, being able to control form submission manually can be useful.

Behind-the-Scenes Data Fetching and Submission
There are also situations in which you may need to trigger an action or load data without causing a
page transition.

Managing Data with React Router390

A Like button would be an example. When it’s clicked, a process should be triggered in the background
(such as storing information about the user and the liked post), but the user should not be directed
to a different page:

Figure 14.6: A Like button below a post

To achieve this behavior, you could wrap the button into a <Form> and, at the end of the action()
function, simply redirect back to the page that is already active.

But technically, this would still lead to an extra navigation action. Therefore, loader() functions would
be executed and other possible side-effects might occur (the current scroll position could be lost, for
example). For that reason, you might want to avoid this kind of behavior.

Thankfully, React Router offers a solution: the useFetcher() Hook, which yields an object that contains
a submit() method. Unlike the submit() function provided by useSubmit(), the submit() method
yielded by useFetcher() is meant for triggering actions (or loader() functions) without starting a
page transition.

A Like button, as described previously, can be implemented like this (with the help of useFetcher()):

import {
 // ... other imports
 useFetcher,
} from 'react-router-dom';
import { FaHeart } from 'react-icons/fa';

function PostDetails() {
 // ... other code & logic

Chapter 14 391

 const fetcher = useFetcher();

 function handleLikePost() {
 fetcher.submit(null, {
 method: 'post',
 action: `/posts/${post.id}/like`,
 // targeting an action on another route
 });
 }

 return (
 <div id="post-details">
 <h1>{post.title}</h1>
 <p>{post.body}</p>
 <div className="actions">
 <button className="icon-btn" onClick={handleLikePost}>
 <FaHeart />
 Like this post
 </button>
 <form onSubmit={handleSubmit}>
 <button>Delete</button>
 </form>
 </div>
 </div>
);
}

The fetcher object returned by useFetcher() has various properties. For example, it also contains
properties that provide information about the current status of the triggered action or loader (including
any data that may have been returned).

But this object also includes two important methods:

•	 load(): To trigger the loader() function of a route (e.g., fetcher.load('/route-path'))
•	 submit(): To trigger an action() function with the provided data and configuration

In the code snippet above, the submit() method is called to trigger the action defined on the
/posts/<post-id>/like route. Without useFetcher() (i.e., when using useSubmit() or <Form>), React
Router would switch to the selected route path when triggering its action. With useFetcher(), this
is avoided, and the action of that route can be called from inside another route (meaning the action
defined for /posts/<post-id>/like is called while the /posts/<post-id> route is active).

Managing Data with React Router392

This also allows you to define routes that don’t render any element (that is, in which there is no
page component) and, instead, only contain a loader() or action() function. For example, the
/posts/<post-id>/like route file (pages/like.js) looks like this:

// there is no component function in this file!

export function action({ params }) {
 console.log('Triggered like action.');
 console.log(`Liking post with id ${params.id}.`);
 // Do anything else
 // May return data or response, including redirect() if needed
 return null; // something must be returned, even if it's just null
}

As mentioned in the code snippet, any data may be returned in this action. But you must at least return
null—avoiding the return statement and not returning anything is not allowed and will cause an error.

It’s registered as a route as follows:

import { action as likeAction } from './pages/like.js';
// ...
{ path: ':id/like', action: likeAction },

This works because this action() is only triggered via the submit() method provided by useFetcher().
<Form> and the submit() function yielded by useSubmit() would instead initiate a route transition to
/posts/<post-id>/like. Without the element property being set on the route definition, this transition
would lead to an empty page, as shown here:

Figure 14.7: An empty (nested) page is displayed, along with a warning message

Chapter 14 393

Because of the extra flexibility it offers, useFetcher() can be very useful when building highly inter-
active user interfaces. It’s not meant as a replacement for useSubmit() or <Form>, but rather, as an
additional tool for situations where no route transition is required or wanted.

Deferring Data Loading
Up to this point in the chapter, all data fetching examples have assumed that a page should only be
displayed once all its data has been fetched. That’s why there was never any loading state that would
have been managed (and hence no loading fallback content that would have been displayed).

In many situations, this is exactly the behavior you want as it does not often make sense to show a
loading spinner or similar fallback content for a fraction of a second just to then replace it with the
actual page data.

But there are also situations in which the opposite behavior might be desirable—for example, if you
know that a certain page will take quite a while to load its data (possibly due to a complex database
query that must be executed on the backend) or if you have a page that loads different pieces of data
and some pieces are much slower than others.

In such scenarios, it may make sense to render the page component even though some data is still
missing. React Router also supports this use case by allowing you to defer data loading, which, in turn,
enables the page component to be rendered before the data is available.

Deferring data loading is as simple as returning a promise from the loader (instead of awaiting it there):

// ... other imports
export async function loader() {
 return {
 posts: getPosts()
 };
}

In this example, getPosts() is a function that returns a (slow) Promise:

async function getPosts() {
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);
 await wait(3); // utility function, simulating a slow response
 if (!response.ok) {
 throw new Error('Could not fetch posts');
 }
 const data = await response.json();
 return data;
}

Managing Data with React Router394

React Router allows you to return raw promises. When doing so, you can wait for the actual values
yielded by those promises in the client-side code.

Inside the component function where useLoaderData() is used, you must also use a new component
provided by React Router: the Await component. It’s used like this:

import { Suspense } from 'react';
import { Await } from 'react-router-dom';
// ... other imports

function PostsLayout() {
 const data = useLoaderData();

 return (
 <div id="posts-layout">
 <nav>
 <Suspense fallback={<p>Loading posts...</p>}>
 <Await resolve={data.posts}>
 {(loadedPosts) => <PostsList posts={loadedPosts} />}
 </Await>
 </Suspense>
 </nav>
 <main>
 <Outlet />
 </main>
 </div>
);
}

The <Await> element takes a resolve prop that receives a value of type Promise from the loader data.
It’s wrapped by the <Suspense> component provided by React.

The value passed to resolve is a Promise that was stored in the object returned by the loader() func-
tion. There, a key named posts was used to hold that Promise. The value for that key was the Promise
returned by getPosts(). It’s this Promise that’s passed as a value to resolve via <Await resolve={data.
posts}>. If a different key name were used (e.g., blogPosts), that key name had to be referenced when
setting resolve (e.g., <Await resolve={data.blogPosts}>).

Await automatically waits for the Promise to resolve before then calling the function that’s passed to
<Await> as a child (that is, the function passed between the <Await> opening and closing tags). This
function is executed by React Router once the data of the deferred operation is available. Therefore,
inside that function, loadedPosts is received as a parameter, and the final user interface elements
can be rendered.

Chapter 14 395

The Suspense component that’s used as a wrapper around <Await> defines some fallback content that
is rendered as long as the deferred data is not yet available. In Chapter 10, Behind the Scenes of React and
Optimization Opportunities, the Suspense component was used to show some fallback content until the
missing code was downloaded. Now, it’s used to bridge the time until the required data is available.

As shown in Figure 14.8, when returning a Promise (and using <Await>) like this, other parts of the
website, that are not loaded via <Await>, are already rendered and displayed while waiting for the
posts data.

Figure 14.8: Post details are already visible while the list of posts is loading

Another big advantage of returning a Promise and awaiting it in the client-side code is that you can
easily combine multiple fetching processes and control which processes should be deferred and which
ones should not. For example, a route might be fetching different pieces of data. If only one process
tends to be slow, you could defer only the slow one like this:

export async function loader() {
 return {
 posts: getPosts(), // slow operation => deferred
 userData: await getUserData() // fast operation => NOT deferred
 };
}

In this example, getUserData() is not deferred because the await keyword is added in front of it.
Therefore, JavaScript waits for that Promise (the Promise returned by getUserData()) to resolve before
returning from loader(). Hence, the route component is rendered once getUserData() finishes but
before getPosts() is done.

Summary and Key Takeaways
•	 React Router can help you with data fetching and submission.
•	 You can register loader() functions for your routes, causing data fetching to be initialized as

a route becomes active.
•	 loader() functions return data (or responses, wrapping data) that can be accessed via

useLoaderData() in your component functions.

Managing Data with React Router396

•	 loader() data can be used across components via useRouteLoaderData().
•	 You can also register action() functions on your routes that are triggered upon form submis-

sions.
•	 To trigger action() functions, you must use React Router’s <Form> component or submit data

programmatically via useSubmit() or useFetcher().
•	 useFetcher() can be used to load or submit data without initiating a route transition.
•	 When fetching slow data, you can return promises without awaiting them in the loader() to

defer loading some or all of a route’s data.

What’s Next?
Fetching and submitting data are extremely common tasks, especially when building more complex
React applications.

Typically, those tasks are closely connected to route transitions, and React Router is the perfect tool
for handling this kind of operation. That’s why the React Router package offers powerful data man-
agement capabilities that vastly simplify these processes.

In this chapter, you learned how React Router assists you with fetching or submitting data and which
advanced features help you handle both basic and more complex data manipulation scenarios.

Therefore, this chapter concludes the list of core React Router features you need to know.

The next chapters will explore React’s server-side capabilities and how you may build fullstack appli-
cations with React, load data on a server, and use the Next.js framework.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following questions. You
can then compare your answers to the examples found at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/blob/14-routing-data/exercises/questions-answers.md:

1.	 How are data fetching and submission related to routing?
2.	 What’s the purpose of loader() functions?
3.	 What’s the purpose of action() functions?
4.	 What’s the difference between <Form> and <form>?
5.	 What’s the difference between useSubmit() and useFetcher()?
6.	 What’s the idea behind returning promises instead of awaiting them in a loader()?

Apply What You Learned
Apply your knowledge about routing, combined with data manipulation, to the following activity.

Activity 14.1: A To-Dos App
In this activity, your task is to create a basic to-do list web app that allows users to manage their daily
to-do tasks. The finished page must allow users to add to-do items, update to-do items, delete to-do
items, and view a list of to-do items.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/exercises/questions-answers.md

Chapter 14 397

The following paths must be supported:

•	 /: The main page, responsible for loading and displaying a list of to-do items
•	 /new: A page, opened as a modal above the main page, allowing users to add a new to-do item
•	 /:id: A page, also opened as a modal above the main page, allowing users to update or delete

a selected to-do item

If no to-do items exist yet, a fitting info message should be shown on the / page. If users try to visit
/:id with an invalid to-do ID, an error modal should be displayed.

To complete the activity, perform the following steps:

1.	 Create a new React project and install the React Router package.
2.	 Create components (with the content shown in the screenshots below) that will be loaded for

the three required pages. Also, add links (or programmatic navigation) between these pages.
3.	 Enable routing and add the route definitions for the three pages.
4.	 Create loader() functions to load (and use) all the data needed by the individual pages.
5.	 Add action() functions for adding, updating, and deleting to-dos.

Hint: If you need to submit multiple forms for different actions from the same page, you could
include a hidden input field that sets some value you can check for in your action() function,
e.g., <input type="hidden" name="_method" value="DELETE">. Alternatively, you can also
set <Form method="delete"> (or set it to "patch", "put", or other HTTP verbs) and check for
request.method in your action() function.

Note

For this activity, there is no backend API you could use. Instead, use localStorage to
manage the to-do data. Keep in mind that the loader() and action() functions are exe-
cuted on the client side and can therefore use any browser APIs, including localStorage.

You will find example implementations for adding, updating, deleting, and getting to-do
items from localStorage at https://github.com/mschwarzmueller/book-react-
key-concepts-e2/blob/14-routing-data/activities/practice-1/src/data/
todos.js.

Also, don’t be confused by the pages that open as modals above other pages. Ultimately, these
are simply nested pages, styled as modal overlays. In case you get stuck, you can use the
example Modal wrapper component found at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/
src/components/Modal.jsx.

For this activity, you can write all CSS styles on your own if you so choose. But if you want
to focus on the React and JavaScript logic, you can also use the finished CSS file from the
solution at https://github.com/mschwarzmueller/book-react-key-concepts-e2/
blob/14-routing-data/activities/practice-1/src/index.css.

If you use that file, explore it carefully to ensure you understand which IDs or CSS classes
might need to be added to certain JSX elements of your solution.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/src/data/todos.js
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/src/data/todos.js
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/src/data/todos.js
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/src/components/Modal.jsx
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/src/components/Modal.jsx
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/src/components/Modal.jsx
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/src/index.css
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/14-routing-data/activities/practice-1/src/index.css

Managing Data with React Router398

6.	 Add error handling in case data loading or saving fails.

The finished pages should look like this:

Figure 14.9: The main page displaying a list of to-dos

Figure 14.10: The /new page, opened as a modal, allowing users to add a new to-do

Chapter 14 399

Figure 14.11: The /:id page, also opened as a modal, allowing users to edit or delete a to-do

Figure 14.12: An info message, displayed if no to-dos were found

Note

The full code, and solution, to this activity can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/
activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/14-routing-data/activities/practice-1

15
Server-side Rendering & Building
Fullstack Apps with Next.js

Introduction
Thus far in this book, you have learned a lot about building client-side React applications, that is, ap-
plications where the (transpiled) React code executes in the browsers of your website visitors.

This makes sense because React was originally created to simplify the process of building interactive
and reactive UIs by running JavaScript code on the client side. To this date, most React features, in-
cluding the ones covered up to this point in this book (e.g., state, context, and routing), exist to fulfill
this purpose.

But, as you will learn in this and the following chapters, you can actually also execute React code on
the server side. There are certain React features that may only be used there—for example, React
Server Components, which will be covered in great detail in the Chapter 16, React Server Components
& Server Actions.

This chapter will get you started with React on the server side, briefly explain what server-side ren-
dering (SSR) is, and introduce you to Next.js, a popular and feature-rich fullstack framework for React
that allows you to blend backend and frontend code. You will learn how to create Next.js apps and
how to use core Next.js features like file-based routing.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Describe the difference between client-side and server-side React
•	 Determine which kind of React app to build
•	 Build fullstack React apps with the help of the Next.js framework
•	 Explain the key features and advantages of Next.js

Server-side Rendering & Building Fullstack Apps with Next.js402

What’s the Problem with Client-Side React Apps?
The big advantage of single-page applications (SPAs) and client-side React is that you can build highly
reactive and interactive web UIs. The UI can be updated almost instantly, visible page reloads and
switches can be avoided, and hence your users benefit from a mobile-app-like user experience.

But this reliance on client-side code (and, therefore, JavaScript) also has potential disadvantages:

•	 If users disable JavaScript, the website will be pretty much unusable.
•	 The initially fetched HTML document is almost empty—data fetching and content rendering

only take place after that initial HTTP request and response.

The first point might not matter too much, since only a small subset of all users will disable JavaScript
and you can show an appropriate warning message via the <noscript> tag.

But the second point can have significant consequences. Since the initial HTML document is almost
empty, users won’t see any content until all the JavaScript code has been fetched and executed. While
most users might not see a notable delay, depending on the device and internet connection of a user,
this may take up to a few seconds for some users.

In addition, search engine crawlers (e.g., Google’s crawler) will not necessarily wait for all your cli-
ent-side JavaScript code to be fetched and executed when indexing your page. Therefore, those crawlers
may see a mostly empty page and hence rank your website badly (or not index it at all).

Figure 15.1: The page content is nowhere to be found in the page source code (i.e., the fetched HTML
document)

Figure 15.1 shows the page source code (which can be inspected by right-clicking on the website) of a
typical React app. As you can see in that figure, there’s almost no content between the <body> tags. The
title ("Hello World!") and the text below it are missing in that source code. The content is missing
there because it’s not part of the initial HTTP response. Instead, it’s rendered by the transpiled React
code after the page loaded (and after that code was downloaded from the server).

Chapter 15 403

Of course, these disadvantages won’t matter in all cases. If you’re building some company-internal
application, or a UI that’s hidden behind some login (and hence won’t be indexed anyway), or if you’re
only targeting users with fast devices and internet connections, you might not need to worry about
these potential problems.

But if you’re building a public-facing website where search engine indexing matters or that may be
visited by users with slow devices or internet connections, you might want to consider getting rid of
these disadvantages. And that’s precisely where SSR can help out.

Making Sense of Server-side Rendering (SSR)
When working with React, SSR refers to the process of rendering web pages, and therefore your React
components, on the server that handles the incoming HTTP request when a user visits your website.

With SSR enabled, the server will render your React component tree and hence produce the actual
HTML code yielded by your components and their JSX instructions. It’s this finished HTML code that’s
then sent back to the client. As a result, website visitors will receive an HTML file that’s not empty
anymore but that instead contains the actual page content. Search engine crawlers will also see that
content and index the page accordingly.

Figure 15.2: React SSR in action

Server-side Rendering & Building Fullstack Apps with Next.js404

Best of all, you don’t lose the client-side advantages of React because, when enabling SSR, React still
works on the client side as it did before! It’ll take over control once that initial HTML document has
been received and provide users with the same SPA experience you were able to deliver without SSR.
Though, technically, when using SSR, React will be initialized slightly differently on the client. Instead
of re-rendering the entire DOM there, it’ll hydrate the page content that was rendered on the server.
Hydration means that React will connect your component structure to the rendered HTML code (which
was rendered based on that same structure, of course) and make it interactive.

Figure 15.3: After receiving the rendered HTML code, React hydrates the code on the client side

Consequently, you’ll get the best of both worlds: non-empty, pre-rendered pages for the initial HTTP
request sent by the browser, and a highly reactive web application for the user to enjoy.

Adding SSR to a React Application
It is extremely important to understand that SSR-enabled React applications need to execute code
in two environments (server and browser), whereas client-side React applications only rely on the
browser. Therefore, to use SSR, a server-side environment must be added to the React project—it’s
not enough to just adjust the React code in a few places.

For example, standard Vite-based projects don’t support SSR out of the box. Consequently, if you want
to support SSR, you must edit your Vite project setup (and some of your project code files) to enable
executing React code on both the client and server side. For example, you must add some code that
handles incoming HTTP requests and triggers React code execution on the server side.

Chapter 15 405

The fact that manually enabling SSR is a non-trivial process that requires advanced Node.js and back-
end development knowledge is one of the reasons why the official React documentation recommends
creating new React projects with the help of frameworks like Next.js (see https://react.dev/learn/
start-a-new-react-project).

But it’s not the only reason.

Server-side Data Fetching Is Not Trivial
Besides the non-trivial setup process, SSR-enabled projects also suffer from another possible problem:
server-side data fetching is difficult.

If you’re building a React app that needs to fetch data in some components (e.g., with the help of
useEffect(), as shown in Chapter 8, Handling Side Effects), you’ll find out that the data is not fetched
when the component is rendered on the server. Instead, the data fetching will only occur on the cli-
ent side. The server-side rendered HTML markup will not contain the content that depends on the
fetched data.

The reason for this behavior is that React component functions are only executed on the server once—
i.e., it’s only the first component render cycle that’s performed on the server. You can think of SSR
producing only an initial page snapshot. Subsequent state updates are ignored, and effect functions
(triggered via useEffect()) are also therefore not executed on the server side. As a result, data fetching
that relies on effect functions and subsequent state updates will not work on the server side.

Consider this example, where a Todos component function uses useEffect() to fetch some (dummy)
to-dos data from https://jsonplaceholder.typicode.com/:

import { useEffect, useState } from 'react';

import { loadTodos, saveTodo } from '../todos.js';

Note

Manually enabling SSR requires backend development and build process configuration
knowledge—in addition to the React knowledge you need.

Thankfully, though, as you’ll learn throughout this chapter, you often don’t need to go
through that setup process. Instead, you can rely on frameworks like Next.js to do the
heavy lifting for you.

If you’re interested in manually configuring SSR in Vite-based projects, the official Vite
SSR documentation is a great place to learn more: https://vitejs.dev/guide/ssr.

In addition, you can explore the following demo project that was set up according to the
official Vite SSR instructions: https://github.com/mschwarzmueller/book-react-
key-concepts-e2/tree/15-ssr-next-intro/examples/02-ssr-enabled.

https://react.dev/learn/start-a-new-react-project
https://react.dev/learn/start-a-new-react-project
https://jsonplaceholder.typicode.com/
https://vitejs.dev/guide/ssr
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/02-ssr-enabled
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/02-ssr-enabled

Server-side Rendering & Building Fullstack Apps with Next.js406

function Todos() {
 const [todos, setTodos] = useState();

 useEffect(() => {
 async function fetchTodos() {
 // sends HTTP request to jsonplaceholder.typicode.com
 const todos = await loadTodos();
 setTodos(todos);
 }
 fetchTodos();
 }, []);

 async function addTodoAction(fd) {
 const todo = {
 title: fd.get('title'),
 };
 const savedTodo = await saveTodo(todo);
 setTodos((prevTodos) => [savedTodo, ...prevTodos]);
 }

 return (
 <section>
 <h2>Manage your todos</h2>
 <form action={addTodoAction}>
 <input type="text" name="title" />
 <button type="submit">Add Todo</button>
 </form>
 {(!todos || todos.length === 0) && (
 <p>No todos found.</p>
)}
 {todos && todos.length > 0 && (

 {todos.map((todo) => (
 <li key={todo.id}>{todo.title}
))}

)}
 </section>
);
}

Chapter 15 407

When running this code on the server, there won’t be any errors. Instead, the app will run as expected
and fetch the dummy to-dos from the backend server.

However, the HTML document that’s produced on the server will not contain the fetched to-dos. In-
stead, it will just contain the fallback text ("No todos found").

Figure 15.4: The rendered HTML does not contain the actual to-dos

The generated markup does not contain the fetched to-dos because, as explained above, React compo-
nent functions only execute once on the server side (and the function passed to useEffect() doesn’t
execute at all).

Due to this behavior, you can’t easily perform asynchronous operations and, for example, fetch data
via useEffect() in your React components when using SSR. Hence, the server-side rendered HTML
content will never contain that data.

While you can come up with workarounds to that problem (e.g., perform the data fetching operation
on the server, before executing the component functions) that’s a problem that will be solved by
Next.js and a concept called React Server Components (RSC).

Introducing Next.js
Next.js is a React framework—i.e., a framework that builds upon React and adds extra features and
patterns to it. Specifically, Next.js adds features like file-based routing, built-in SSR, or automatic cach-
ing to improve performance. Though, most importantly, it unlocks two crucial React concepts: React
Server Components (RSC) and Server Actions. As you will learn, these features enable server-side
React code to perform asynchronous operations and, for example, fetch and render data on the server.

Note

You find the complete example code on GitHub: https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/03-ssr-data-
fetching.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/03-ssr-data-fetching
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/03-ssr-data-fetching
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/03-ssr-data-fetching

Server-side Rendering & Building Fullstack Apps with Next.js408

Thus, Next.js saves you the effort of manually enabling SSR, and, additionally, unlocks other powerful
features that help with fetching data on the server.

This chapter will get you started with Next.js and provide a brief overview of its core concepts. The
next chapter (Chapter 16, React Server Components & Server Actions) will then build upon this knowledge
to dive even deeper.

Creating Next.js Projects
To use Next.js, you must first create a Next.js project. Technically, it’ll still be a React project, which
means you will be able to use React features like components, props, state, Hooks, or JSX. But it’ll be a
project that comes with the next package installed, and that enforces a certain folder structure that’s
needed by Next.js. You can’t install Next.js into an existing (Vite-based) React project and start using
it there. Significant adjustments to the project configuration and structure would be required. Next.
js brings its own build process and does not use Vite under the hood. Hence, creating a brand-new
project makes more sense.

To get started with a new Next.js project, you should run the following command in your system
terminal or command prompt (in a place on your system where you want the new project folder to
be created):

npx create-next-app@latest first-next-app

After running this command, you’ll have to make a couple of choices in the terminal (e.g., if you want
to use TypeScript).

You can confirm all those choices by simply pressing the Enter key, hence accepting the default option.
However, you should ensure that you choose No for TypeScript (unless you know how to use it) and Yes
for App Router. You can find a (slightly cleaned up) starting project on GitHub: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/04-nextjs-
intro.

Inside the created project folder, a development server can be started via:

npm run dev

While the command is the same as in a Vite project, the server will actually target a different port
by default. Instead of localhost:5173 (Vite), Next.js projects use localhost:3000 for the preview
development server.

Note

There are also alternative React frameworks like Remix/React Router (they were merged
to bring optional fullstack React framework features to React Router) or TanStack Start.

Next.js has not only existed for a very long time but it’s also the most popular (measured
by usage) fullstack framework at the point in time when this book was written.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/04-nextjs-intro
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/04-nextjs-intro
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/04-nextjs-intro

Chapter 15 409

Just as in a Vite-based project, you should keep this process up and running while you’re working
on the project code. The underlying build process will automatically reload and update the preview
website as you make changes to your code.

A newly created Next.js project comes with all its dependencies installed (npm install is automatically
executed as part of the project creation process) and a project structure like this:

•	 An app/ folder that holds route-related files (see the next section)
•	 A public/ folder that can be used to store assets that should be served statically (i.e., without

being changed by the build process)
•	 jsconfig.json and nextjs.config.mjs files for configuring the project and Next.js-specific

behaviors
•	 package.json and package-lock.json for managing project dependencies

Hence, except for the app/ folder, it’s not too different from the structure you know from Vite. Howev-
er, it is worth noting that Next.js, unlike Vite, does not enforce .jsx as a file extension for JavaScript
files that contain JSX code. You can use it but you don’t have to. For example, the starting project uses
page.js and layout.js, not page.jsx and layout.jsx, even though these files contain JSX code.

Just like Vite-based projects, Next.js projects come with a build workflow that processes and transpiles
your code files automatically, when running the development server or building for production (which
you can do via npm run build).

Like pretty much all modern React project setups, Next.js projects therefore support importing style
files (like globals.css) or images into JavaScript files. It also allows you to omit or set file extensions
on imports. In addition, Next.js has CSS Modules support, too.

Put in other words: you can work in Next.js projects in pretty much the same way as you do in Vite-
based projects.

Note

Next.js is an established, mature framework that’s never stopped innovating and changing.

In late 2022, the so-called App Router was introduced as a new way of structuring and
building Next.js applications (the old approach is now referred to as Pages Router). This
book, of course, covers the new App Router approach.

As of mid-2024 (when this edition is written), the App Router approach, despite being
marked as stable, still frequently receives new features and changes.

Therefore, even though unlikely, the concepts and code explained in this book may change
or break over time. The setup process described above may change, too. In such cases, a
note (with instructions on how to adjust the code) will be added to the Changelog document
on GitHub: https://github.com/mschwarzmueller/book-react-key-concepts-e2/
blob/main/CHANGELOG.md.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md

Server-side Rendering & Building Fullstack Apps with Next.js410

Working with File-Based Routes
In Vite-based projects, you have a high degree of flexibility when it comes to the project structure.
Inside the src/ folder, you can create any subfolders and files of your choice. The names of those files
and folders also don’t really matter (if they’re valid and use the right extensions).

When working with React Router, you would set up routes in one of your JSX code files and load any
component stored in any file for any route (see Chapter 13, Multipage Apps with React Router).

In Next.js projects, that’s a bit different because Next.js uses the file system for defining routes—you
don’t set up routes in code. As a result, while you still have lots of flexibility, there are some routing-re-
lated rules regarding the project structure and file names that must be followed—otherwise, the app
will break and not work as intended.

Next.js implements file-based routing via its own built-in router. This router analyzes your file system
and derives supported routes, their URL paths, and which React components to load and render based
on the file and folder structure in your project.

When using the App Router approach, you therefore must store all components that should be loaded
as pages inside the app/ folder (or a nested folder) in files named page.js. Since all route component
files must be named page.js, it’s the parent folder names that define the route path for which the
component will get loaded.

For example, you might have a file and folder structure as shown in Figure 15.5:

Figure 15.5: In Next.js, page.js files contain route components. The folder names determine the path

In Figure 15.5, you can see that four routes are defined via the file system: a root route (/) and the
/about, /users, and /terms/en routes. For each route, the component stored in the respective
page.js will be loaded and rendered onto the screen.

Chapter 15 411

For example, you might have an app/page.js file like this:

export default function Home() {
 return (
 <main>
 <h1>Hello Next.js World </h1>
 <p>Build fullstack React applications with ease!</p>
 <p>
 Learn more about Next.js in{' '}
 <a href="https://www.udemy.com/course/nextjs-react-the-complete-
guide/">
 my course
 {' '}
 or the official documentation.
 </p>
 </main>
);
}

As you can see, a regular React component function is stored in this page.js file. The name of the
component function does not matter—it’s just important that it’s a component function that’s exported
inside a file named page.js. As a result, the following content will be visible on the screen if a user
visits <domain>/ (or just <domain>, without the forward slash):

Figure 15.6: The Next.js router loads the component stored in the app/page.js file and renders its
content

You can therefore easily add as many, possibly nested, routes as needed—simply by creating folders,
subfolders, and page.js files.

Server-side Rendering with Next.js
Besides providing a built-in file-based router (and many other features that will be explored through-
out this and the next chapters), Next.js has one other crucial advantage: it implements SSR out of the
box. You don’t have to add any files, change any configuration, or adjust any code to render React
components on the server—instead, it works right from the start.

Server-side Rendering & Building Fullstack Apps with Next.js412

Consequently, the app/page.js file component (the Home component in the example above), is evalu-
ated and rendered on the server side when a user visits <domain>/. It’s the finished HTML code that’s
sent to the browser. And, just as with Vite-based projects with custom SSR, Next.js renders all child
components that may be used inside of page.js on the server, too.

In addition, when building websites with Next.js, you still build React apps. That’s why Next.js apps
become interactive on the client side once the SSR is done. Technically, as you’ll also learn in the next
chapter (React Server Components & Server Actions), they’ll be made interactive in a different way than
in Vite-based SSR-enabled React apps (where React hydrates the server-side rendered markup on the
client), but ultimately, your website users will have a SPA-like user experience.

Therefore, if you want to build a React app that supports SSR, relying on a framework like Next.js
instead of setting up SSR manually is recommended.

In addition, you will be able to use other helpful features, like the file-based routing system, especially
since it doesn’t stop at defining routes via page.js files. It, for example, also simplifies the process
of defining layouts.

Working with Layouts
As mentioned, when it comes to routing, file names and where you store those files matter.

For example, you’ll also find a layout.js file next to the page.js file in the app/ folder from the
example above.

Figure 15.7: Besides a page.js file, a styling file, and a favicon, a layout.js file can be found in the
app/ folder

Chapter 15 413

Just like page.js, layout.js is a reserved file name—i.e., that file is handled by Next.js in a special way.

This layout.js file also exports a component function, but the created component will not be ren-
dered for one specific path. Instead, it is used as a wrapper around all sibling or nested pages. Thus,
the layout.js file can be used to define JSX code that will be shared across multiple pages.

Since it’s meant to be used as a wrapper component, the component function exported by layout.js
must use the special children prop (see Chapter 3, Components & Props) to define the place where the
wrapped page content should be displayed.

For example, you could use the app/layout.js file to define a global layout that adds a navigation bar
above the <main> content:

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>
 <header>
 <nav>

 Home
 Events

 </nav>
 </header>
 <main>{children}</main>
 </body>
 </html>
);
}

In this example code snippet, it’s also worth noting that the RootLayout component renders the <html>
and <body> elements. In Vite-based projects, that’s not something you would do. There, you instead
define a place in the index.html file where the rendered HTML should be injected (via the createRoot()
function exposed by the react-dom package; see Chapter 2, Understanding React Components & JSX).

Next.js does not rely on such an index.html file; instead, it forces you to define a root layout.js file
at the top level of the app/ folder. It’s then this root layout that must define the general structure of the
rendered HTML page. However, there is no <head> section in that file, since Next.js will manage and
inject that section behind the scenes. In addition, Next.js will also insert JavaScript and CSS imports
into the rendered HTML document.

You may add more (nested) layout.js files if you want to have nested layouts that only wrap some of
your pages. Such layouts are optional; the root layout (app/layout.js) is mandatory, however.

Server-side Rendering & Building Fullstack Apps with Next.js414

With a layout.js file like the one shown in the previous code example, in a project that contains
an app/page.js file, and an app/events/page.js file, website users could visit both pages and see a
shared navigation.

Figure 15.8: As the user navigates from/to /events, the shared header persists

In Figure 15.8, the main content (defined by the page.js files) changes but the shared navigation (set
up in layout.js) persists.

While sharing JSX markup is the most common use case for using layouts, you can also use them to
share styles by importing a CSS file into a layout.js file:

import './globals.css';

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 Unchanged JSX code…
 </html>
);
}

In this and the above examples, the component function is named RootLayout—that name does not
matter, but it must be a component that’s exported.

Of course, layouts that are used to share a navigation bar become even more useful if you add working
links to them…

Chapter 15 415

Managing Internal Navigation
In the previous code example, the <a> element was used for creating links between the different
Next.js application pages.

However, just like other React apps, Next.js applications become SPAs once the initial page load is
done. Therefore, creating internal links via <a> tags is discouraged for the same reasons it was dis-
couraged when using React Router in Vite-based React projects (compare Chapter 13, Multipage Apps
with React Router).

Like React Router, Next.js (which takes care of routing in Next.js projects) provides a special Link
component that you should use for internal links (instead of the <a> element):

import Link from 'next/link';

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>
 <header>
 <nav>

 <Link href="/">Home</Link>
 <Link href="/events">Events</Link>

 </nav>
 </header>
 <main>{children}</main>
 </body>
 </html>
);
}

This <Link> component accepts a href prop, which is set to the target path. Internally, Next.js will
capture link clicks and update the browser address bar and website UI accordingly by loading and
rendering the required page.js components.

Highlighting Active Links & Using the “use client” Directive
If you want to style links differently when they lead to the currently active page, you won’t find a built-in
NavLink component as is the case with React Router. Instead, you must add your own logic by setting
the Link component’s className prop dynamically based on the currently active path.

Server-side Rendering & Building Fullstack Apps with Next.js416

To find out which path is currently active, you can use the usePathname() Hook provided by Next.js:

import { usePathname } from 'next/navigation';

const path = usePathname();

For example, you could adjust the layout.js file to look like this:

import Link from 'next/link';
import { usePathname } from 'next/navigation';

import './globals.css';

export default function RootLayout({ children }) {
 const path = usePathname();
 return (
 <html lang="en">
 <body>
 <header>
 <nav>

 <Link
 href="/"
 className={path === '/' ? 'active' : ''}>
 Home
 </Link>

 <Link
 href="/events"
 className={path.startsWith(
 '/events'
) ? 'active' : ''}
 >
 Events
 </Link>

 </nav>
 </header>
 <main>{children}</main>

Chapter 15 417

 </body>
 </html>
);
}

However, if you were to run this code, you’d get an error message:

Figure 15.9: Next.js complains about the usage of a Hook in a Server Component

This error message sounds quite cryptic as it mentions a Client Component and Server Components.
Both are crucial React concepts that will be explored in the next chapter (React Server Components &
Server Actions).

For the current chapter, it’s enough to know the fix for this problem, which is to add the "use client"
directive at the top of the app/layout.js file:

"use client";

import Link from 'next/link';
import { usePathname } from 'next/navigation';

import './globals.css';

Server-side Rendering & Building Fullstack Apps with Next.js418

export default function RootLayout({ children }) {
 const path = usePathname();

 // return JSX code
}

"use client" is a so-called directive, i.e., an instruction that “tells” React and Next.js that this file
must be handled in a special way. Adding it will get rid of the error message shown in Figure 15.9,
thus enabling path-aware Link styling. As mentioned, the concrete impact of this directive will be
explored in the next chapter.

Whenever you plan to use a Hook in a component in a Next.js project, the "use client" directive
must be added—no matter if it’s a Hook provided by React or Next.js.

Creating & Using Regular Components
The Link component mentioned in the previous sections is a component offered by Next.js. But, of
course, you can also build your own components—it is still a React app after all.

Besides the components that are exposed as pages (page.js) or layouts (layout.js), you can create
and use component functions in any files (with any names) of your choice.

For example, you can add a components/ folder next to the app/ folder and add a MainNavigation.js
file in it. This file can then hold a new MainNavigation component that returns the navigation-related
JSX code:

'use client';

import Link from 'next/link';
import { usePathname } from 'next/navigation';

export default function MainNavigation() {
 const path = usePathname();

 return (
 <header>

Note

You might wonder why "use client" is required for components that use Hooks. After
all, this directive was not needed when using SSR in Vite-based projects.

The reason is that Next.js technically doesn’t use SSR, as introduced at the beginning of
this section. Instead, Next.js (when using the App Router) uses a React feature called
React Server Components. This crucial feature will be explored in great detail in the next
chapter. There, you’ll also learn why exactly "use client" is needed in some components.

Chapter 15 419

 <nav>

 <Link href="/" className={path === '/' ? 'active' : ''}>
 Home
 </Link>

 <Link
 href="/events"
 className={path === '/events' ? 'active' : ''}
 >
 Events
 </Link>

 </nav>
 </header>
);
}

Please note that "use client" must be added at the top of this MainNavigation.js file since the
usePathname() Hook is used in the component function.

With the code moved into this newly added MainNavigation component, inside the layout.js file,
"use client" can be removed since the usePathname() Hook is no longer used in that file. It’s used in
a child component (inside <MainNavigation/>) but React does not care about this.

Hence, the updated layout.js file looks like this:

import './globals.css';
import MainNavigation from '../components/MainNavigation';

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>
 <MainNavigation />
 <main>{children}</main>
 </body>
 </html>
);
}

Server-side Rendering & Building Fullstack Apps with Next.js420

Thanks to building, outsourcing, and using the custom MainNavigation component, the updated
layout.js file therefore contains a lean and concise component function again.

Handling Dynamic Routes
As you learned in Chapter 13, Multipage Apps with React Router, in the From Static to Dynamic Routes
section, many React apps need to support dynamic routes, too.

For example, you might want to allow your users to visit /events/e1 to view the details for an event
with ID e1 and /events/e2 for an event with ID e2 (and so on).

This is such a common requirement that Next.js, of course, supports it. You can add dynamic routes
in a Next.js app by creating a folder (somewhere in the app/ folder) that has its name wrapped by
square brackets—for example, app/events/[eventId]. Of course, you still need a page.js file in that
folder to actually create a route.

The part between the square brackets (eventId, in this example) is entirely up to you. But the square
brackets tell Next.js that you’re setting up a dynamic route.

The folder name between the square brackets acts as an identifier that can be used to retrieve the
concrete value encoded in the URL (e.g., to retrieve e1 in /events/e1).

Note

With the exception of the route-related files, it is entirely up to you how you structure your
Next.js project and how you name your files.

As mentioned, you can store custom (non-page) components in a components/ folder (or
a folder with any other name of your choice) in any place of your choice. You can put that
components/ folder into the app/ folder or into the root project folder.

You can also not use a components/ folder at all, and instead store components in files
that are located next to your page.js files. Because if a file is not named page.js, it
won’t be treated as a page—so there is no danger of accidentally creating routes you don’t
want in your project. If you have an app/components/MainNavigation.js but no app/
components/page.js file, there won’t be a /components route. Files not named page.
js (or one of the other reserved filenames—see the upcoming section Other Filename
Conventions) will simply be ignored by Next.js (for routing purposes).

You find more information and ideas regarding Next.js project organization in the offi-
cial documentation: https://nextjs.org/docs/app/building-your-application/
routing/colocation.

https://nextjs.org/docs/app/building-your-application/routing/colocation
https://nextjs.org/docs/app/building-your-application/routing/colocation

Chapter 15 421

Every component that’s used as a page (or layout) receives a params prop that’s automatically set by
Next.js. If it’s a page or layout in a dynamic route folder or in some nested child folder, the params prop
will hold a Promise which resolves to an object that contains the chosen identifiers (like eventId) as
keys and the concrete URL path values (like e1) as values for those keys. Since params holds a Promise,
await must be used on it to get access to the underlying object.

For example, the app/events/[eventId]/page.js file would ensure that the component exported
inside the page.js file gets rendered for visits to /events/e1, /events/e2, etc. This page component
can then output event details with the help of the following code:

// getEventById is a custom dummy function to load event data
import { getEventById } from '@/lib/events';

export default async function EventDetailsPage({ params }) {
 // params.eventId exists because of folder name => [eventId]
 const { eventId } = await params;
 const event = getEventById(eventId);

 return (
 <div id="event-details">
 <header>

 <h1>{event.title}</h1>
 <p>
 {event.location} | {event.date}
 </p>
 </header>
 <p>{event.description}</p>
 <p>
 <button>Register</button>
 </p>
 </div>
);
}

In this example, the automatically provided params prop is used to get access to the eventId encoded
in the URL. If some other identifier than eventId would be used in the folder name, that alternative
name would be used to access the path value (e.g., for [id]/page.js, you’d access (await params).id).

Server-side Rendering & Building Fullstack Apps with Next.js422

As a result, users can visit this dynamic route and explore the event details for a chosen event ID.

Figure 15.10: The event details are loaded and displayed for /events/e1

Note

You can find the complete example code, including the lib/events.js file, on GitHub:
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-
ssr-next-intro/examples/08-nextjs-dynamic-routes.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/08-nextjs-dynamic-routes
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/examples/08-nextjs-dynamic-routes

Chapter 15 423

Of course, when working with dynamic routes, you typically also need links to those dynamic paths
in some parts of your application. Therefore, in this example, the app/events/page.js file contains
code that dynamically renders a list of event items, where every item has a link to its detail page:

import Link from 'next/link';

import { getEvents } from '@/lib/events';

export default function EventsPage() {
 const events = getEvents();
 return (
 <div id="events">
 <h2>Browse available events</h2>

 {events.map((event) => (
 <li key={event.id}>

 <div>
 <h2>{event.title}</h2>
 <p>{event.description}</p>
 <p>
 <Link
 href={`/events/${event.id}`}>Explore Event</Link>
 </p>
 </div>

))}

 </div>
);
}

Clicking these links will take users to the event detail page for the specific event ID.

Note

Static routes, dynamic routes, and nested routes are the most important route types you
need to know when working with Next.js. You’ll use them for most of your routes.

In addition, Next.js also offers other (more advanced and niche) route types and features
that are worth exploring if you decide to dive deeper into Next.js: https://nextjs.org/
docs/app/building-your-application/routing.

https://nextjs.org/docs/app/building-your-application/routing
https://nextjs.org/docs/app/building-your-application/routing

Server-side Rendering & Building Fullstack Apps with Next.js424

Besides different route types that are enabled by using the proper folder names, Next.js also offers
additional reserved filenames.

Other Filename Conventions
Next.js does not just offer a variety of route types and routing-related features—it also offers more
reserved filenames than just page.js and layout.js.

Therefore, when working with the Next.js App Router, you should also be aware that the following
reserved filenames exist, too:

•	 loading.js files can be added next to or above page.js and layout.js files to define compo-
nents that should be displayed whilst the page (or layout) component is fetching data.

•	 error.js files can be added in the same places as loading.js files to render error fallback
components in case one of the sibling or child pages throws an error.

•	 not-found.js files can be added to display fallback content in case a website visitor tries to
load a non-existent route or resource.

•	 route.js files can be added to set up routes that do not render components but instead return
data (e.g., in the JSON format).

You can learn more about these file types and even more file name conventions in the official documen-
tation: https://nextjs.org/docs/app/building-your-application/routing#file-conventions.

You’ll also see some of these file types in action in the next chapter.

Diving Deeper into Next.js
At this point, you have a solid Next.js foundation but, as mentioned in the previous section, you can
dive deeper into Next.js with the help of the official documentation.

There, besides learning more about routing, route types, and filenames, you can also explore how
Next.js helps with caching, styling, or managing page metadata. Since this book is primarily about
React itself, and not about Next.js, covering all these topics here would quickly bloat this book.

That’s why this chapter focused on setting a solid React SSR and Next.js foundation. The essentials
covered throughout this chapter will help with understanding more advanced React and Next.js fea-
tures like React Server Components in the next chapter. In addition, thanks to these fundamentals,
you’ll also be able to quickly learn more about Next.js with the help of the official documentation or
dedicated Next.js books or courses.

Summary and Key Takeaways
•	 By default, Vite-based React apps (like most React apps that don’t use Next.js or a similar

framework) only support client-side rendering.
•	 Without SSR, a relatively empty index.html file is sent to the client.

https://nextjs.org/docs/app/building-your-application/routing#file-conventions

Chapter 15 425

•	 This can lead to bad user experiences (if users see an empty page for a prolonged period) or
suboptimal search engine ranking.

•	 You can enable SSR by manually adjusting React projects (code and build process) to support
component function execution on the server side.

•	 To avoid custom SSR setup work and take advantage of many other benefits, you can use
frameworks like Next.js.

•	 Next.js projects come with built-in SSR support and can be created via the npx create-next-
app command.

•	 Modern Next.js uses the App Router approach, which takes advantage of an app/ directory
that is used for setting up routes with the help of the file system.

•	 Inside app/, you define pages by creating folders that contain page.js files (e.g., app/about/
page.js adds support for an /about route).

•	 To share JSX code (and logic or styles) across pages, you can add layout.js files.
•	 Next.js also offers other reserved filenames to handle fallback content that’s shown while

loading data or to handle errors.
•	 You can link between pages via Next.js’ Link component.
•	 When using React Hooks (like useState() or Next.js’ useRouter()), you must add the "use

client" directive at the top of the file that uses the Hook.
•	 Besides static pages (like app/events/page.js or app/about/page.js), you can also set up

dynamic pages by enclosing a folder name with square brackets (e.g., app/events/[eventId]/
page.js).

•	 Dynamic path parameter values can be extracted in the loaded page component by using the
special params prop that’s set on the component by Next.js.

•	 Asynchronous operations can be problematic when using SSR—or, at least, they can’t be ex-
ecuted in components that are rendered on the server, hence forcing the client-side code to
perform them. At least when not using React Server Components.

What’s Next?
At this point, you have learned a lot about SSR in React apps and about Next.js. You’re able to create
Next.js projects, define routes, render page components, add navigation, and work with dynamic paths.

You also learned that Next.js comes with built-in SSR. Thus, all React components (built-in and custom,
page and non-page) are rendered on the server when a website visitor sends a request.

Modern Next.js does not stop there, though—instead, unlike the custom SSR setup introduced at the
beginning of this chapter, Next.js projects that use the App Router help with asynchronous data fetching
on the server side by unlocking React’s React Server Component feature. It’s that feature, and Server
Actions, that will be explored in great detail in the next chapter!

Server-side Rendering & Building Fullstack Apps with Next.js426

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/15-ssr-next-intro/exercises/questions-
answers.md:

1.	 Which two main advantages can SSR offer?
2.	 What are some potential disadvantages or weaknesses of SSR?
3.	 How does Next.js help with SSR?
4.	 How are routes configured in Next.js (when using the “App Router”)?
5.	 What’s special about a page component in Next.js?
6.	 What’s the purpose of layout components in Next.js?
7.	 Where can you store non-page (and non-layout) React components in a Next.js project?
8.	 When and where do you need to add the "use client" directive?

Apply What You Learned
With all the newly gained knowledge about Next.js, it’s time to apply it to a real demo project—a demo
application that will be rendered on the server.

In the following section, you’ll find an activity that allows you to practice working with Next.js. As
always, you will also need to employ some of the concepts covered in earlier chapters.

Activity 15.1: Migrating a Vite-Based React Router App
In this activity, your job is to build upon the Vite-based app from Activity 13.1. That app was built with
Vite and React Router. Your job is to migrate it from Vite and React Router to Next.js.

Therefore, you should create a new Next.js project (using the App Router) and rebuild the same app
in that project.

Note

You can find the starting code for this activity at https://github.com/mschwarzmueller/
book-react-key-concepts-e2/tree/15-ssr-next-intro/activities/practice-1-
start. When downloading this code, you’ll always download the entire repository. Make
sure to then navigate to the subfolder with the starting code (activities/practice-1-
start, in this case) to use the right code snapshot.

Since your task is to migrate the project that was built in Activity 13.1, you might also want
to use the finished code from that activity. You can find it here: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/activities/
practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/15-ssr-next-intro/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/15-ssr-next-intro/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/15-ssr-next-intro/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/13-routing/activities/practice-1

Chapter 15 427

After downloading the code and running npm install in the project folder to install all required
dependencies, the solution steps are as follows:

1.	 If you created a new Next.js project (i.e., if you’re not using the provided starting snapshot),
clean up the layout.js and page.js files to remove everything but the component functions.

2.	 Create two new routes: a /products route and a /products/<some-id> route.
3.	 Migrate the data.js file into the Next.js project (e.g., into a lib/ folder in the root project folder).
4.	 Update the page components to load and display the data provided by the data.js file.
5.	 Create a new components/ folder and migrate (copy) the MainNavigation component into

this folder.
6.	 Update the MainNavigation component (and any other component that needs it) to use

Next.js’ Link component.
7.	 Highlight active links with the help of the usePathname() Hook—don’t forget about the "use

client" directive!
8.	 Migrate the styles from the index.css file into the globals.css file. Make sure that the file

gets imported into the root layout file.

The expected result should look as shown in the following screenshots:

Figure 15.11: The home page content

Figure 15.12: The /products page content

Server-side Rendering & Building Fullstack Apps with Next.js428

Figure 15.13: The /products/<some-id> page content

Note

You will find the full code for this activity, and an example solution, here: https://github.
com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/
activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/15-ssr-next-intro/activities/practice-1

16
React Server Components &
Server Actions

Introduction
In the previous chapter, you learned that you can use server-side rendering (SSR) to render React
components on the server. SSR ensures that users receive a fully populated HTML document upon
their initial HTTP request, not an almost empty page shell. You were also introduced to Next.js and
learned how you may use that framework to build React apps that come with SSR (and many other
useful features) out of the box.

This chapter builds upon the previous one—specifically, you’ll learn about two crucial React features
that are unlocked by Next.js: React Server Components (RSCs) and Server Actions.

Throughout this chapter, you’ll learn how these two features help with data fetching and mutations,
and why you can’t use them in every React project, even though they’re technically part of React—not
Next.js.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Create and use React Server Components (RSCs)
•	 Describe how (and when) RSCs are executed and rendered to the screen
•	 Fetch data and perform asynchronous operations with the help of RSCs
•	 Draw server-client boundaries by building and using client components
•	 Perform server-side data mutations with the help of Server Actions
•	 Update the user interface (UI) in response to Server Actions

React Server Components & Server Actions430

The Problem with Server-side Data Fetching
If you have an SSR-enabled React app, either by manually enabling it, for example, in a Vite-based
project, or by using a framework like Next.js, your React component functions get executed on the
server. Thus, any data required by those components should be fetched on the server.

But as explained in the previous chapter, in the Server-side Data Fetching Is Not Trivial section, sending
HTTP requests with the help of useEffect() or trying to update the UI via useState() does not work
when using SSR. On the server, React only calls the component functions once—it does not re-execute
them when the state changes. It also doesn’t call your effect functions.

This is a serious limitation since many React apps need to fetch data from some backend or a database.
Not being able to fetch and render that data on the server means that website visitors will again re-
ceive incomplete HTML documents (and wait for the data to be fetched on the client side), and search
engine crawlers will not see the most important content of the web page.

That’s one of the reasons why React introduced RSCs.

Introducing RSCs
RSCs, despite their name, are not necessarily components that run on a server. Instead, their defining
characteristic is that their component functions are never, under any circumstances, executed on the
client side!

Note

RSCs and Server Actions are relatively new React features. Supporting them in custom
React projects is tricky, as you will learn throughout this chapter.

Whilst unlikely, it is possible that concepts or features related to RSCs or Server Actions
change. It’s also possible that supporting these features in custom projects gets easier.

That’s why this book comes with a dedicated document that tracks any significant changes
you should be aware of: https://github.com/mschwarzmueller/book-react-key-
concepts-e2/blob/main/CHANGELOG.md.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md

Chapter 16 431

Consequently, RSCs may be executed on a server, but they may also be called during the build process,
hence pre-generating components at build time. They definitely won’t be executed in the browser,
though.

Figure 16.1: RSCs can’t be called from the client side

But what’s the purpose of RSCs? How are they created and used?

Making Sense of RSCs
The core idea behind RSCs is that you can build components that render outside of the browser (e.g.,
on the server). As a result, these components can execute code that wouldn’t work in the browser—for
example, because Node.js-specific APIs are used, or code that relies on credentials (e.g., database
credentials) that must not be exposed to the client.

Unlike “normal” components (client components) that are rendered via SSR, RSCs can be rendered (on
the server) after the initial page load. Hence, RSCs are not just about rendering an initial page snap-
shot. In addition, RSCs can fetch data on the server side. Later in this chapter, the RSCs vs Server-side
Rendering section will take a closer look at the relationship between RSCs and “normal” components
rendered via SSR.

Hence, RSCs solve an important problem: they allow you to intertwine frontend and backend React
code. Whereas, in the past, before RSCs, you typically had to build separate backend and frontend
web applications, you can now build integrated fullstack apps that blend server-side and client-side
React code.

React Server Components & Server Actions432

Using RSCs therefore offers various advantages:

•	 Building fully integrated fullstack applications where the backend and frontend are closely
connected and use the same server becomes much easier.

•	 Asynchronous server-side data fetching inside of components becomes possible: Unlike on
the client side (or when using SSR), React allows you to use async/await and return a Promise
value in your component functions.

•	 Website visitors download smaller client-side JavaScript bundles since the code of RSCs is
omitted.

•	 Running compute-heavy operations or using large third-party libraries gets easier since the
operations and their code can be outsourced to the server (or to the build process).

•	 Code or credentials that shouldn’t be accessible by your website users can be moved into RSCs.

For example, thanks to RSCs, you can create components like this:

import pg from 'pg'; // pg package (more info: node-postgres.com)
const { Client } = pg

const client = new Client({
 user: 'username',
 password: 'your-password',
 host: 'my.database-server.com',
 port: 5334,
 database: 'demo',
});

async function ProductsPage() {
 await client.connect();
 const res = await client.query('SELECT * FROM products');
 await client.end();

 return (

 {res.rows.map(row => <li key={row.id}>{row.title})}

);
}

The ProductsPage component contains code that reaches out to a PostgreSQL database to fetch prod-
uct data from there.

Without RSCs, this kind of component would be impossible to build and use. You wouldn’t be allowed
to use async/await, the pg package might rely on some APIs that are not available in the browser, and
you would expose your database credentials in the client-side code bundle.

Chapter 16 433

All these things are allowed when building RSCs. React explicitly does allow you to return a Promise
(and hence use async/await) when building an RSC. Since the code is guaranteed to never end up on
the client side, connecting to a database is safe, too.

Therefore, you can easily build fully integrated fullstack apps where backend and frontend code
blend seamlessly.

However, using RSCs is both simple and complex at the same time, as the next section will explain.

Creating & Using RSCs
In a Next.js project that uses the App Router, all React components, no matter if used as pages or
nested in some other component, are, by default, RSCs.

As you can tell if you inspect any React component function in a Next.js project, there really is nothing
special about them. They look like regular React components:

export default function ServerComponentInfo() {
 return <p>This is a React Server Component.</p>;
}

You may use async/await with them, but you don’t have to. You may use server-side APIs and packages,
but you don’t have to. So, creating RSCs is simple—they’re just normal components after all.

The same is true for using them—you use them as you always used React components: as custom JSX
elements:

<ServerComponentInfo />

As you can see, you wouldn’t be able to tell that this is a special kind of component. It’s created and
used as you learned it through this entire book.

Nonetheless, all the other components from all the other chapters of this book, which were used in
Vite-based React projects, were not RSCs. They were regular components or client components.

So, what makes the components in a Next.js project special? Why is a feature provided by React
available in Next.js projects but not necessarily in other React projects (e.g., in Vite-based projects)?

Unlocking RSCs in React Projects
RSCs are a feature provided by React, not Next.js. Yet, not all React projects can use this feature.

The reason for that, and for why RSCs are available in Next.js projects, is the Next.js build process
and what Next.js does to these components (and to the entire React project code, actually) behind the
scenes. At a high level, you can think of Next.js doing the following things:

•	 The build workflow and bundling process separates server and client components to ensure
that no RSC code ends up on the client side.

•	 Next.js sets up API endpoints (i.e., URL addresses to which the client-side code may send re-
quests) that trigger RSC component functions on the server and return instructions that allow
the client-side React code to update the UI.

React Server Components & Server Actions434

•	 Next.js calls these endpoints when needed—for example, when navigating to a new page.
•	 Next.js passes the API response (which contains these rendering instructions) to React, which

uses the returned instructions to update the UI as needed.

Figure 16.2: Client and server component code are separated; communication happens via HTTP
requests

Technically, it’s a bit more complex than that, but for the purpose of this book and for using the fea-
ture, a deep understanding of the internals is not required—just as you don’t need to understand what
exactly happens internally when using useState(), for example.

You can verify the mentioned points by running a demo Next.js project you find here: https://github.
com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/examples/01-
rsc-intro.

This demo app consists of two basic page component files: app/page.js and app/info/page.js. The
main page component (the Home component inside app/page.js) outputs a ServerComponentInfo
component:

import ServerComponentInfo from '../components/ServerComponentInfo';

export default function Home() {
 return <ServerComponentInfo />;
}

That component in turn simply outputs some static, hardcoded content:

import Link from 'next/link';

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/examples/01-rsc-intro
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/examples/01-rsc-intro
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/examples/01-rsc-intro

Chapter 16 435

export default function ServerComponentInfo() {
 return (
 <div id="rsc-info">
 <p>This is a React Server Component.</p>
 <p><Link href="/info">Learn More</Link></p>
 </div>
);
}

Both the Home and the ServerComponentInfo components are RSCs—simply because they are com-
ponents in a Next.js project. As mentioned earlier, all components in Next.js projects are server
components by default. If these components were part of a Vite-based React project that is not set
up to support RSCs, these components would instead be “normal” components (client components).

In the same demo project, there is also a component for the /info page. This component contains
some code that wouldn’t work in a component that isn’t an RSC:

import fs from 'node:fs/promises';

export default async function InfoPage() {
 const info = await fs.readFile('data/rsc-info.json', 'utf-8');
 const { summary } = JSON.parse(info);

 return (
 <div id="info-page">
 <h1>Understanding React Server Components</h1>
 <p>
 {summary}
 </p>
 </div>
);
}

This code wouldn’t work in any of the (Vite-based) React projects you saw before in this book because
of the following reasons:

•	 The InfoPage component uses Node’s fs package to load data from a rsc-info.json file (which
is part of the project).

•	 The component uses async/await, hence returning a Promise that eventually yields the JSX
code (i.e., the React elements).

React Server Components & Server Actions436

In projects that do not support RSCs, you’re not able to use server-side APIs since all the code runs
in the browser. You’re also not allowed to return a Promise in your components. In non-RSCs, that
would not be considered a valid component function return value. When working with RSCs, both
things are allowed and possible, though.

As mentioned in the Making Sense of RSCs section, using server-side functionalities (like Node.js APIs)
is something that’s unlocked because the InfoPage component, like all components in Next.js projects,
is an RSC. For RSCs, React also supports the usage of async/await.

Consequently, as expected, you won’t find the code of the InfoPage component in the client-side
JavaScript code bundles. You can verify this by visiting the /info page. If you open the Network tab
in the browser developer tools, and you then reload the page, you’ll see all the HTTP requests sent
to the server. This includes all requests for JavaScript code files that are needed on the client side of
this React app.

Figure 16.3: When visiting /info, requests for CSS, JS, and some other files are sent to the server

Chapter 16 437

If you then go through all the JavaScript files requested and search for rsc-info.json in the down-
loaded code files, you won’t have any matches in any file. This proves that this code, which is part of
the InfoPage component function, does not end up in any client-side code bundle.

Figure 16.4: The data source filename that’s included in the RSC code can’t be found on the client side

How does the content fetched from the rsc-info.json file show up on the screen then?

This gets answered if you use a different browser than Chrome or Edge. This is required since there
is a bug with the Network tab in the developer tools of Chrome/Edge that leads to the response of a
request being hidden under certain circumstances.

React Server Components & Server Actions438

Instead, you can, for example, use Firefox, to visit the root page (/). There, click the link that’s visible
on the page to navigate to the /info page. As you do so, one new HTTP request will be sent. If you
inspect that request and its response (in Firefox’s browser developer tools), you’ll see the serialized
RSC instructions that are returned by the server.

Figure 16.5: Serialized instructions for client-side React are received from the server

As you can see, it’s not HTML content that’s received as a response. Instead, it’s a bunch of serialized
instructions that are translated to DOM elements by React on the client side (i.e., in the browser).

Therefore, as you can tell, building and using RSCs is simple, but preparing the project to handle them
is not. Instead, you need a build process that separates client and server code, and API endpoints that
invoke server component functions on the server. You also need client-side code that sends requests
to those API endpoints whenever the server components should be rendered.

RSCs and Server Actions Can’t Be Used in All Projects
Thus far in this book, whenever some new React feature was introduced, you could simply use it in
your React project, no matter whether it was a project created and managed by Vite or any other tool
(e.g., create-react-app).

With RSCs and Server Actions, this changes. Due to the many things that must be done behind the
scenes (see the previous section), even though these are features provided by React, you can’t just
start using them in any React project. Instead, to unlock these features, you must have a project that’s
configured to support them.

As a result, at the point of time where this book is written, RSCs and Server Actions can really only
be used with the help of frameworks that integrate and actively support these features—for example,
the Next.js framework.

Chapter 16 439

Of course, it is technically possible to set up a project that supports both features on your own, but
it requires advanced knowledge regarding backend development and build workflow configuration.
Consequently, most React projects that need these features rely on frameworks like Next.js. Since
the way you work with RSCs and Server Actions will always be the same, no matter in which kind of
project you use them, this book will therefore ignore the custom setup part and instead focus on how
to use these two core concepts.

RSCs vs Server-side Rendering
At first sight, using RSCs may look similar to SSR React components. After all, both concepts are about
running some code outside of the browser.

But even though the concepts sound similar, they are quite different.

SSR is all about rendering a component tree to HTML when a request is received. It’s about creating
an initial page snapshot, in the end.

In addition, when building an interactive web application, a vital part of SSR is that the pre-rendered
HTML snapshot gets hydrated on the client side—as explained in the previous chapter (see the Making
Sense of Server-side Rendering (SSR) section and Figure 15.3).

As a result, when using SSR, the entire component tree with all its component functions is evaluated
on the server side as well as on the client side. There is no split between server-side and client-side
code—it’s the same app and the same component tree on both sides. For that reason, you also can’t
have any server-exclusive code in your React components.

With RSCs, that changes. The code of their component functions, as explained in the previous sections,
never ends up on the client side.

Figure 16.6: RSCs are not hydrated; instead, their output is requested via HTTP requests

React Server Components & Server Actions440

That’s why an SSR-enabled project doesn’t automatically support RSCs. On the other hand, you could
set up a project that supports RSCs but also uses SSR for some components—components that should
be pre-rendered on the server but that are also needed on the client side (e.g., because they add in-
teractivity to the page). These types of components will be explored in the next section.

It’s also worth noting that RSCs, like server-side rendered components in SSR projects, only execute
once per request. However, RSCs, unlike “normal” components rendered via SSR, can be executed
on-demand while the app is running. They’re not limited to being called to create an initial page
snapshot.

There is an important question, though: how can you add interactivity, and, for example, handle user
input, in React apps where all components are rendered on the server? User interaction takes place
in the browser, after all.

RSCs vs Client Components
RSCs provide some convincing advantages (see the Making Sense of RSCs section), but they also intro-
duce one potentially big problem: if all the component code “lives” and executes on the server, there’s
no room for client-side interactivity.

Not All Components Should Be RSCs
If you have a component that needs to manage some state (e.g., some shopping cart that should only
be shown upon user interaction), that state and the UI must be managed and updated by client-side
React. Because that was (and is) one of the main selling points of React: you can use it to build highly
reactive and interactive UIs. But this goal clearly clashes with the idea of RSCs, where no component
code makes it to the browser, and where components are only rendered once per request.

That’s why React allows you to define so-called server-client boundaries by adding the 'use client'
directive at the top of files that contain component functions that should run on the client side.

Figure 16.7: The ‘use client’ directive creates a boundary between server-side and client-side code

Chapter 16 441

You already encountered 'use client' in the previous chapter, in the Highlighting Active Links & Using
the ‘use client’ Directive section. Back then, this directive didn’t make a lot of sense. Now, with your
newly gained knowledge about RSCs, the purpose behind this directive will become clearer.

With 'use client' added to a component file, the components defined in that file become client
components. Client components are also pre-rendered on the server, but their code executes on the
client side, too. They are hydrated, as explained in the previous chapter. Thus, unlike the code of server
components, the code of client components makes it to the client side:

'use client';

import { useState } from 'react';

export default function Cart() {
 const [isVisible, setIsVisible] = useState(false);

 function handleCartVisibility() {
 setIsVisible((prevState) => !prevState);
 }

 return (
 <div id="cart">
 <button onClick={handleCartVisibility}>
 {isVisible ? 'Hide Cart' : 'Show Cart'}
 </button>
 {isVisible && <p>Cart Items</p>}
 </div>
);
}

In this example, the Cart component is a client component because 'use client' is added at the
top of the file. This is required because the Cart component uses the useState() Hook, which only
works in the browser.

Whenever you add the 'use client' directive to a component file, the component functions in that
file will be included in the client-side code bundle. Thus, the component functions can (and will) be
executed in the browser—therefore you can use features that rely on running there, like useState()
or code that should run upon user input (e.g., if a <button> was pressed).

That’s also why Next.js shows an error if you try to use a Hook in a component that’s not marked as a
client component via 'use client'.

React Server Components & Server Actions442

Figure 16.8: Next.js complains about the usage of the useState() Hook in an RSC

This error occurs because you’re trying to build something impossible: a component that’s only eval-
uated on the server but that also reacts to user input and updates some state. Since the latter, as you
learned in Chapter 4, Working with Events and State, will typically result in a UI update, the code needs
to execute on the client side—something that’s clearly in conflict with the goal of running the com-
ponent code only on the server.

Thus, 'use client' must be added whenever you have a component that needs to run in the browser.

‘use client’ Affects Child Components, Too!
Using the 'use client' directive in a component file has one very important implication: all nested
components become client components, too—even if you don’t use 'use client' in their component
files.

This is technically necessary since the JSX code of client components is re-evaluated, and all custom
components used there are re-executed, every time the client component function is called again
(e.g., because of some state change)—that’s something you learned in Chapter 10, Behind the Scenes of
React and Optimization Opportunities.

Note

Of course, you will not need to add the 'use client' directive in projects that don’t im-
plement RSCs. That’s why you didn’t see it in any other React project in earlier chapters.

Chapter 16 443

As a result, all the components nested inside a client component must be client components them-
selves since their code would otherwise not be available on the client side.

Figure 16.9: Child components of client components become client components, too

To keep the client code bundle small and performant, it’s typically a good idea to maximize the number
of server components and thus minimize the number of client components. Since nested components
of client components become client components automatically, you should therefore try to move the
server-client boundary (i.e., the usage of 'use client') as far down the component tree as possible.
Ideally, only the leaves of your component tree use React Hooks or handle user input. Put in other
words: only use 'use client' when you must and try to affect as few components with it as possible.

React Server Components & Server Actions444

Figure 16.10: The majority of components are RSCs

Figure 16.10 shows an example component tree where only a small subset of all components are client
components.

The question therefore is this: how can you combine and optimize the usage of server and client
components in React projects that support RSCs?

Combining RSCs and Client Components
Typically, you’ll end up with React projects where most components don’t need to be client compo-
nents (therefore, they should be RSCs), but where some component functions do need to run in the
browser (i.e., they do need 'use client').

You can think of 'use client' marking the point in the component tree where the component type
switches from server to client component (see Figure 16.9 and Figure 16.10).

For that reason, React allows you to combine both kinds of components in the same project, though,
you need to follow a couple of important rules:

•	 Server components may import and render client components (i.e., output a client component
in their JSX code).

•	 Client components must not directly import and render server components that rely on serv-
er-side features.

•	 Client components may implicitly render server components via props (e.g., via the children
prop).

To make these rules a bit less abstract, each case will be shown with a concrete example.

Chapter 16 445

Outputting Client Components in Server Components
You can use client components in the JSX code of server components without issues.

Consider the following example UserTodos component, which allows users to manage an array of
to-dos that’s stored locally via localStorage:

'use client';

import { useEffect, useRef, useState } from 'react';

export default function UserTodos() {
 const todoRef = useRef(null);
 const [todos, setTodos] = useState([]);

 useEffect(() => {
 const storedTodos = localStorage.getItem('todos');
 setTodos(storedTodos ? JSON.parse(storedTodos) : []);
 }, []);

 function handleAddTodo(event) {
 event.preventDefault();
 const todo = todoRef.current.value.trim();

 const newTodo = {
 id: new Date().getTime(),
 text: todo,
 };

 setTodos((prevTodos) => [...prevTodos, newTodo]);
 const storedTodos = localStorage.getItem('todos');
 localStorage.setItem(
 'todos',
 JSON.stringify(
 storedTodos
 ? [...JSON.parse(storedTodos), newTodo]
 : [newTodo]
)
);
 }

 return (
 <>

React Server Components & Server Actions446

 <form onSubmit={handleAddTodo}>
 <input type="text" placeholder="Your to-do" ref={todoRef} />
 <button type="submit">Add</button>
 </form>

 {todos.map((todo) => (
 <li key={todo.id}>{todo.text}
))}

 </>
);
}

Since localStorage (a browser API), refs, state (todos via useState()), and event listeners (submit
via onSubmit) are used, this must be a client component. That’s why 'use client' is added at the
top of the file.

However, this component can be used in a server component without issues:

import UserTodos from '../components/UserTodos';

export default function Home() {
 return (
 <main>
 <h1>Manage your to-dos with ease!</h1>
 <UserTodos />
 </main>
);
}

That’s possible because client components can also be rendered on the server—they’re just not exclusive
to that environment (unlike RSCs, which are). Put in other words: client components are rendered
on the server like all components were in SSR projects that do not support RSCs (e.g., the Vite-based
SSR-enabled project from the previous section). An initial snapshot is rendered upon the first request,
thereafter client-side React takes over and hydrates the component.

Note

In the preceding example, data is loaded from localStorage via useEffect(). This is
done to ensure that the code runs on the server. Since localStorage is not available there,
accessing it without wrapping with useEffect() would cause an error.

Since useEffect() is ignored on the server, it’s a safe way of using browser-exclusive APIs.

Chapter 16 447

Outputting Server Components in Client Components
As already mentioned in the ‘use client’ Affects Child Components, Too! section, you can’t import server
components into client components and render them there.

Though, in many situations, you’ll not get an error. For example, you might have a client-side Cart
component defined like this:

'use client';

import { useState } from 'react';

import CartItem from './CartItem';

export default function Cart() {
 const [isVisible, setIsVisible] = useState(false);

 function handleCartVisibility() {
 setIsVisible((prevState) => !prevState);
 }

 return (
 <div id="cart">
 <button onClick={handleCartVisibility}>
 {isVisible ? 'Hide Cart' : 'Show Cart'}
 </button>
 {isVisible && (

 <CartItem title={'Book'} quantity={1} />
 <CartItem title={'Pen'} quantity={2} />
 <CartItem title={'Pencil'} quantity={5} />

)}
 </div>
);
}

Unlike Cart, the CartItem component function might be a server component (i.e., it’s not marked
via 'use client'):

export default function CartItem({ title, quantity }) {
 return (

 <article>

React Server Components & Server Actions448

 <h2>{title}</h2>
 <p>Quantity: {quantity}</p>
 </article>

);
}

This code works because the component that used to be a server component (CartItem) simply be-
comes a client component once it is imported and used in a client component file.

You will, however, face an error message if you’re trying to import and use a server component that
uses server component-specific features, like a Node.js API or async/await.

For example, the following adjusted DynamicCartItem component tries to use Node’s fs package to
load a cart item from a file:

import fs from 'node:fs/promises';

export default async function DyncamicCartItem({ id }) {
 const data = await fs.readFile(`data/cart.json`, 'utf8');
 const storedCart = JSON.parse(data);
 const cartItem = storedCart.find((item) => item.id === id);

 return (

 <article>
 <h2>{cartItem.title}</h2>
 <p>Quantity: {cartItem.quantity}</p>
 </article>

);
}

Importing and using this component in the Cart component will cause an error.

Trying to run this code will lead to an error message being shown on the screen because React fails
to automatically convert CartItem to a client component (due to the usage of RSC-exclusive features).
Therefore, it’ll complain about some server-side code (e.g., some Node.js API) you’re trying to use on
the client side.

Figure 16.11: React complains about the usage of a Node.js API in the browser

Chapter 16 449

Hence, in situations like this, you’ll need to restructure your application to end up with a valid compo-
nent combination again. For example, by passing server components as props to client components,
instead of directly importing and rendering them.

Rendering Server Components via Props
You can’t import and use server components that perform some server-side exclusive operation (like
using Node.js APIs) in client components.

But you can change your client component code to not directly import and use the server component.
Instead, you can expect to get a server component as a prop—for example, via the special children
prop about which you learned in Chapter 3, Components and Props:

'use client';

import { useState } from 'react';

export default function Cart({ children }) {
 const [isVisible, setIsVisible] = useState(false);

 function handleCartVisibility() {
 setIsVisible((prevState) => !prevState);
 }

 return (
 <div id="cart">
 <button onClick={handleCartVisibility}>
 {isVisible ? 'Hide Cart' : 'Show Cart'}
 </button>
 {isVisible && {children}}
 </div>
);
}

This adjusted Cart component is still a client component. However, since it no longer directly imports
and renders the DynamicCartItem server component, React is happy.

Instead, the DynamicCartItem component is now imported and output in the Home component like this:

import DyncamicCartItem from '../components/DynamicCartItem';
import Cart from '../components/Cart';

export default function Home() {
 return (

React Server Components & Server Actions450

 <>
 <header>
 <Cart>
 <DyncamicCartItem id={1} />
 <DyncamicCartItem id={2} />
 <DyncamicCartItem id={3} />
 </Cart>
 </header>
 <main>
 <h1>Some dummy app</h1>
 </main>
 </>
);
}

The DynamicCartItem elements are passed as a value for the children prop to the Cart component.

This might be unintuitive at first but it’s vital to understand that this works because the DynamicCartItem
components are now rendered as part of another server component—the Home component. It’s the
result of that rendering process that’s then passed as a value to the Cart component. That component
therefore does not include the DynamicCartItem component in its part of the component tree. Instead,
both Cart and DynamicCartItem are direct children of the Home component.

The overall application component tree would look like this:

Figure 16.12: DynamicCartItem and Cart are both direct child components of the Home component

Even though, in the finished UI, it might look as if the DynamicCartItem is a child of Cart, technically,
it’s not.

It’s key to understand that wrapping a component with another component (<Cart><DynamicCartItem
/></Cart>) leads to a different component tree structure than rendering a component inside another
component.

Chapter 16 451

This is therefore a pattern that can be useful in situations where you might need to include a server
component in a client component.

Overall, you are able to combine RSCs and client components as needed. Furthermore, Next.js also
provides some additional features that can help with RSCs and data fetching via RSCs.

Advanced Data Fetching with Next.js
As mentioned before, in the Making Sense of RSCs section, data fetching via RSCs offers various ad-
vantages compared to data fetching in client components. You don’t have to use useEffect() to
send HTTP requests to separate backend APIs, you can directly reach out to a database, you can use
async/await, and so on. Therefore, it’s absolutely recommended to fetch data via RSCs whenever
possible.

When working with Next.js, RSC-based data fetching becomes even easier because Next.js helps with
showing fallback content while you’re waiting for data to arrive.

Managing Loading States with Next.js
When working with Next.js (with the App Router), you can define loading.js files inside the app/
folder to set up components that will be rendered while sibling or nested server components are
loading data. Next.js determines whether a component is loading data or not by checking whether it
returns a Promise that hasn’t resolved yet.

Consider this example GoalsPage component, which fetches data from a file:

import fs from 'node:fs/promises';

async function fetchGoals() {
 await new Promise((resolve) => setTimeout(resolve, 3000)); // delay

 const goals = await fs.readFile('./data/user-goals.json', 'utf-8');
 return JSON.parse(goals);
}

export default async function GoalsPage() {
 const fetchedGoals = await fetchGoals();

 return (
 <>
 <h1>Top User Goals</h1>

Note

The next chapter will dive even deeper into handling loading states and showing fallback
content. It will explore React’s Suspense feature, which allows for granular loading state
management as data streams in.

React Server Components & Server Actions452

 {fetchedGoals.map((goal) => (
 <li key={goal}>{goal}
))}

 </>
);
}

The function (fetchGoals()) that performs the actual data fetching has a delay built-in to simulate a
slow database or network connection.

Without a loading.js file added to the project, the user will stare at a blank or outdated page for a
couple of seconds before the requested page is rendered.

Figure 16.13: After clicking the link, it takes three seconds for the new page to load

This behavior occurs because the new page is not ready yet and can’t be rendered since it’s still fetch-
ing data.

To improve the user experience, a loading.js file can be added next to the slow app/goals/page.js file
(or, if necessary, in some parent folder, since loading.js will also display its content for child routes).

Inside the newly created app/goals/loading.js file, a regular React component is created. Like all
components in Next.js projects, this is an RSC by default:

export default function LoadingGoals() {
 return <p id="fallback">Loading user goals, please wait...</p>;
}

The component name (LoadingGoals) does not matter. But this component now ensures that the
Loading user goals, please wait… fallback text is shown on the screen while the user waits for
the GoalsPage to load and render.

Chapter 16 453

Figure 16.14: The loading fallback content is shown while the page is transitioning

Of course, you can show any fallback content of your choice—it doesn’t have to be some simple text
as in this example.

Therefore, when working with Next.js, adding loading.js files to define fallback components can
tremendously improve the experience of your website users.

Besides fetching data, many React apps also need to change data at some point.

From Data Fetching to Data Mutations
At this point, you have learned a lot about RSCs, client components, and how they can (and cannot) work
together. In the Making Sense of RSCs section, you also learned about some advantages offered by RSCs.

Of course, you also might want to change data, though—not just load and display it.

Handling Data Mutations with Server Actions
React does not just provide support for RSCs; it also allows you to add so-called Server Actions to
your applications.

Server Actions build up on the same idea as client (form) actions, which were introduced and explained
in Chapter 9, Handling User Input & Forms with Form Actions. However, Server Actions, as their name
implies, will execute on the server side, not on the client side.

Hence, you can use Server Actions to retrieve submitted user input on the server and process it there.
For example, you could store the submitted data in a file or database.

Consequently, Server Actions are an important building block when aiming to build fully integrated
fullstack React applications. Typically, data fetching alone is not enough, which is why the Server
Actions feature exists. By having both, RSCs and Server Actions, you’re able to fetch and mutate data
on the server, while still enabling interactive client-side user experiences where needed.

Unlocking Server Actions in React Projects
Like RSCs, you can’t use Server Actions in all React projects. Instead, a special project setup is required
to use this feature. For example, Next.js projects support Server Actions out of the box (when using
the App Router). Just as with RSCs, you can think of Next.js doing the following things:

•	 The build workflow and bundling process separate the code that belongs to Server Actions so
that it doesn’t end up in the client-side bundle.

•	 Next.js sets up API endpoints that trigger the Server Action functions and respond with any
return values defined in those functions.

React Server Components & Server Actions454

•	 Next.js calls these endpoints when needed (e.g., when submitting a form that’s connected to
a Server Action—as shown in the next section).

Therefore, Server Actions, like RSCs, can be tricky to support in custom projects that do not use
Next.js. It’s absolutely possible to create custom projects that provide support for both Server Actions
and RSCs, but it’s not trivial.

Thankfully, using Server Actions (in projects that support them) is not complicated, though.

Defining and Triggering Server Actions
As mentioned in the Handling Data Mutations with Server Actions section, Server Actions are very similar
to the client form actions you already know from Chapter 9.

But there are two key differences that must be considered when creating a Server Action:

•	 A Server Action function must be asynchronous— (i.e., it must use async/await). There are
no synchronous Server Actions.

•	 Inside the Server Action function, at the very beginning of the function body, you must add
the 'use server' directive.

A valid Server Action can therefore be defined and used in a component like this:

export default function UserFeedback() {
 async function saveFeedback(formData) {
 'use server';
 const feedback = formData.get('feedback');
 console.log(feedback);
 }

 return (
 <form action={saveFeedback}>
 <p>
 <label htmlFor="feedback">Your feedback</label>
 <textarea id="feedback" name="feedback" rows={3} />
 </p>
 <p><button>Submit</button></p>
 </form>
);
}

As you can see, besides the fact that it must be asynchronous and that it uses the 'use server' direc-
tive, this action function looks like the ones you saw in Chapter 9. It receives a formData object that
will be provided by React when the form is submitted, and you set the action function as a value for
the action prop on a <form> element.

As mentioned in the previous section, if you were to search for this code in the code files downloaded
by the browser, you wouldn’t find it—this code really only runs on the server side.

Chapter 16 455

Of course, the preceding example Server Action currently only logs the input to the console. A more
realistic action would probably store that data somewhere and redirect the user to some other page.

Handling User Input & Updating the UI
Consider this updated version of the previous example:

import { storeFeedback } from '../lib/feedback-db';

function UserFeedback() {
 async function saveFeedback(formData) {
 'use server';
 const feedback = formData.get('feedback');
 storeFeedback(feedback);
 }

 return (
 <form action={saveFeedback}>
 <p>
 <label htmlFor="feedback">Your feedback</label>
 <textarea id="feedback" name="feedback" rows={3} />
 </p>
 <p><button>Submit</button></p>
 </form>
);
}

The saveFeedback() Server Action now stores the extracted feedback via the storeFeedback() function.

Note

The UserFeedback component from the previous example is an RSC.

If you think about it, this might be strange, though. After all, this component does handle
some user input and interaction. Why does it work without 'use client' then?

Because Server Actions (bound to the <form>'s action prop) are special. React explicitly
supports this pattern inside of RSCs. 'use client' is indeed required for any other kind
of user input handling (e.g., if you rely on the onSubmit or onChange props). But binding
Server Actions via the action prop is supported.

Furthermore, it’s important to understand that the 'use server' directive only exists
to mark actions as Server Actions. You, for example, can’t use it to mark components as
server components.

React Server Components & Server Actions456

This function is defined like this:

import fs from 'node:fs/promises';

export async function storeFeedback(text) {
 const storedFeedback = await fs.readFile('data/user-feedback.json');
 const feedback = JSON.parse(storedFeedback);

 feedback.push({ id: new Date().getTime(), text });

 await fs.writeFile(
 'data/user-feedback.json',
 JSON.stringify(feedback)
);
}

In a real app, data might be stored in a database. Here, in this simple example, it’s simply stored in a
user-feedback.json file that’s part of the overall Next.js project.

As you can tell, just as you can directly reach out to a file or database from inside an RSC, you are able
to directly edit a file or send a database query from inside a Server Action.

You can also update the UI by programmatically navigating the user to a different page thereafter.
In a Next.js application, you can use the redirect() function provided by Next.js to trigger such a
navigation action—for example, right after storing the submitted feedback text:

import { redirect } from 'next/navigation';
import { storeFeedback } from '../lib/feedback-db';

export default function UserFeedback() {
 async function saveFeedback(formData) {
 'use server';
 const feedback = formData.get('feedback');
 await storeFeedback(feedback);
 redirect('/thanks')
 }

 // same JSX code as before, hence omitted
}

This is a very common pattern when building fullstack applications since you often want to navigate
your website users to a different page once they have submitted data.

But you can also use a different pattern and update the UI that contains the form, based on the form
submission.

Chapter 16 457

Server Actions and useActionState()
You might remember the useActionState() Hook from Chapter 9, Handling User Input & Forms with
Form Actions. This Hook can be used to derive some component state from a (form) action. That state,
in turn, can be used to update the UI based on the result of the action.

Since a Server Action is a special kind of form action, you can use that same Hook to update the UI
based on your Server Action and its returned values.

For example, you could try using useActionState() in the UserFeedback component like this:

import { useActionState } from 'react';
import { redirect } from 'next/navigation';

import { storeFeedback } from '../lib/feedback-db';
import FeedbackForm from './FeedbackForm';

export default function UserFeedback() {
 async function saveFeedback(prevState, formData) {
 'use server';
 const feedback = formData.get('feedback');

 if (!feedback || feedback.trim() === '') {
 return { error: 'Please provide some feedback!' };
 }

 await storeFeedback(feedback);
 redirect('/thanks');
 }

 const [formState, formAction] = useActionState(saveFeedback, {
 error: null,
 });

 return (
 <form action={formAction}>
 <p>
 <label htmlFor="feedback">Your feedback</label>
 <textarea id="feedback" name="feedback" rows={3} />
 </p>
 {formState.error && <p id="error">{formState.error}</p>}
 <p>
 <button>Submit</button>
 </p>

React Server Components & Server Actions458

 </form>
);
}

However, using this code would cause an error:

Figure 16.15: React complaints about the usage of a Hook in an RSC

It’s an error message you already know from the Not All Components Should Be RSCs section and Figure
16.8. React does not allow the usage of Hooks in RSCs—and UserFeedback is an RSC.

The solution, of course, is straightforward: simply add the 'use client' directive at the top of the
UserFeedback.js file:

'use client';
import { useActionState } from 'react';
import { redirect } from 'next/navigation';

import { storeFeedback } from '../lib/feedback-db';
import FeedbackForm from './FeedbackForm';

export default function UserFeedback() {
 // component code didn't change, hence omitted
}

But with this change applied, you’ll encounter another error message:

Figure 16.16: React now complains about the usage of ‘use server’ and ‘use client’ in the same file

This error message occurs because the UserFeedback component file is currently using both the 'use
client' and 'use server' directives—in different places, but in the same file.

Put in other words: you can only define a Server Action (and hence use 'use server') inside an
RSC—not inside a client component.

One possible solution for this problem is to move the feedback form and the useActionState() Hook
into a new component that will be used as a child component of UserFeedbackForm. The Server Action
function can then be passed via props to that newly added component.

Chapter 16 459

For example, you can create a FeedbackForm component that looks like this:

'use client';

import { useActionState } from 'react';

export default function FeedbackForm({action}) {
 const [formState, formAction] = useActionState(action, {
 error: null,
 });

 return (
 <form action={formAction}>
 <p>
 <label htmlFor="feedback">Your feedback</label>
 <textarea id="feedback" name="feedback" rows={3} />
 </p>
 {formState.error && <p id="error">{formState.error}</p>}
 <p>
 <button>Submit</button>
 </p>
 </form>
);
}

This FeedbackForm component expects an action prop, which is then passed as a value to
useActionState(). Consequently, the FeedbackForm component can be used in the UserFeedback
component like this:

import { redirect } from 'next/navigation';

import { storeFeedback } from '../lib/feedback-db';
import FeedbackForm from './FeedbackForm';

export default function UserFeedback() {
 async function saveFeedback(prevState, formData) {
 'use server';
 const feedback = formData.get('feedback');

 if (!feedback || feedback.trim() === '') {
 return { error: 'Please provide some feedback!' };
 }

React Server Components & Server Actions460

 await storeFeedback(feedback);
 redirect('/thanks');
 }

 return <FeedbackForm action={saveFeedback} />;
}

If you were to run this code, the application would work without any problems. So, again, just as with
RSCs, it’s all about coming up with a working component structure.

This is an absolutely valid way of solving this problem. But if you would rather not split the UserFeedback
component into multiple components and outsource the form into FeedbackForm, there is also another
possible solution.

Storing Server Actions in Separate Files
You can define Server Actions directly inside of RSCs. As you learned in the previous chapter, you can
also pass them around via props.

As an alternative, React also permits storing them in separate files. Doing so allows you to build leaner
components since the Server Action code is moved out of the component functions. Furthermore,
React is fine with importing a Server Action that’s stored in a separate file into a client component file.

Considering the previous code examples, you could move the saveFeedback() Server Action into a
separate actions/feedback.js file in your Next.js project folder—though, the file and folder names
are entirely up to you. In that file, you can then also move the 'use server' directive out of the Server
Action and put it at the top of the file:

'use server';

import { redirect } from 'next/navigation';

import { storeFeedback } from '../lib/feedback-db';

export async function saveFeedback(prevState, formData) {
 const feedback = formData.get('feedback');

 if (!feedback || feedback.trim() === '') {
 return { error: 'Please provide some feedback!' };
 }

 await storeFeedback(feedback);
 redirect('/thanks');
}

Chapter 16 461

Adding the 'use server' directive at the top of the file enables you to create multiple Server Action
functions in that same file. You can then export and use them in any other file they might be needed in.

For example, you can import the saveFeedback() action into the UserFeedback component, which
now doesn’t need the separate FeedbackForm child component anymore. Since externally stored Serv-
er Actions can be imported into client component files without issues, the final UserFeedback.js file
looks like this:

'use client';

import { saveFeedback } from '../actions/feedback';
import { useActionState } from 'react';

export default function UserFeedback() {
 const [formState, formAction] = useActionState(saveFeedback, {
 error: null,
 });
 return (
 <form action={formAction}>
 <p>
 <label htmlFor="feedback">Your feedback</label>
 <textarea id="feedback" name="feedback" rows={3} />
 </p>
 {formState.error && <p id="error">{formState.error}</p>}
 <p>
 <button>Submit</button>
 </p>
 </form>
);
}

Therefore, storing Server Actions in separate files does not just lead to leaner components, but can
also help prevent unnecessary component refactoring.

Though, no matter which approach you choose, you can use Server Actions to handle form submis-
sions on the server. Together with RSCs, you can therefore build fullstack applications that seamlessly
blend client-side and server-side code.

Summary and Key Takeaways
•	 React supports two special server-side functionalities: RSCs and Server Actions.
•	 Both features are not available in React projects unless the project is specifically configured to

support them—typically, you’ll therefore need to use a framework that supports these features
(e.g., Next.js).

React Server Components & Server Actions462

•	 RSCs are components that are never rendered on the client side—instead, they may be rendered
on the server (initiated via HTTP requests) or during the build process.

•	 RSCs return rendering instructions that are picked up by client-side React.
•	 Since RSCs never run on the client side, you may use server-exclusive APIs and features in them.
•	 React also permits RSCs to return Promise values, hence you can use async/await and fetch

data asynchronously without issues in RSCs.
•	 In order to build interactive websites where the UI may change after being rendered, you can

also mark components as client components by using the 'use client' directive.
•	 Only client components can use Hooks like useState() or set up event listeners.
•	 Client components are also pre-rendered on the server, but unlike RSCs, they may also execute

on the client side.
•	 You may import and use client components inside of RSCs.
•	 When importing server components into client components, the server components automat-

ically become client components, if possible.
•	 If an RSC can’t be converted into a client component (e.g., because it uses async/await), you’ll

need to restructure the component tree.
•	 You may pass server components to client components (without converting them) via props.
•	 React helps with handling form submissions on the server via Server Actions.
•	 Server Actions work like client actions (see Chapter 9) but must be asynchronous (async/await)

and use the 'use server' directive.
•	 You can define Server Actions inside of RSCs or in separate files—in the latter scenario, you

can move the 'use server' directive to the top of the file to define multiple Server Actions
in the same file.

What’s Next?
In this chapter, you learned about RSCs and Server Actions. You learned that creating and using them is
relatively straightforward, but that supporting them in projects is not—hence frameworks like Next.js
are commonly used to take advantage of these features.

This chapter gave you an idea of how RSCs and Server Actions work behind the scenes, and which
advantages are offered by these features. Throughout this chapter, you also learned about client com-
ponents and how to combine server and client components. Finally, Server Actions were discussed
and different ways of defining and using Server Actions were shown.

The next chapter will build up on this chapter and explore how React’s Suspense functionality may
help with showing fallback content while fetched data is being streamed in.

Chapter 16 463

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/16-rsc-server-actions/exercises/
questions-answers.md:

1.	 What is the defining characteristic of React Server Components?
2.	 What are the problems that React Server Components solve?
3.	 How are React Server Components created and used in Next.js projects?
4.	 Why can’t React Server Components and Server Actions be used in all React projects?
5.	 What is the key difference between Server-Side Rendering (SSR) and React Server Components

(RSCs)?
6.	 What is the purpose of the 'use client' directive?
7.	 How does the 'use client' directive affect child components?
8.	 What are the rules for combining server components and client components?
9.	 How can you handle loading states in Next.js while fetching data with RSCs?
10.	 What are Server Actions in React, and how do they differ from client actions?
11.	 How can you trigger a Server Action?
12.	 How can you update the UI after a Server Action?
13.	 Can you define Server Actions in separate files?

Apply What You Learned
With all the newly gained knowledge about Next.js, it’s time to apply it to a real demo project—a demo
application that will be rendered on the server.

In the following section, you’ll find an activity that allows you to practice working with Next.js. As
always, you will also need to employ some of the concepts covered in earlier chapters.

Activity 16.1: Build a Mini Blog
In this activity, your job is to build a very simple blog website (with Next.js) that allows users to create
and view blog posts. Each blog post should consist of a title, date, and body text. A list of blog post
titles and dates should be rendered on the starting page (/); upon clicking on a post, users should be
taken to the details page (/blog/<some-id>), which shows the complete blog post data. A /blog/new
page should display a form that can be used to create a new post.

Posts should be stored in a posts.json file (which may simply store an array of post objects). After
creating a new post, users should be redirected to that post’s detail page. If users leave either the title
or the body field (or both) empty, an error message should be displayed below the form.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/16-rsc-server-actions/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/16-rsc-server-actions/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/16-rsc-server-actions/exercises/questions-answers.md

React Server Components & Server Actions464

After downloading the code and running npm install in the project folder to install all required
dependencies, the solution steps are as follows:

1.	 Add three new page.js files (and an appropriate folder structure) for the three pages: /, /blog/
new, and /blog/<some-id>.

2.	 Add a new posts.json file in a data/ folder in the root project folder. This file should initially
store an empty array.

3.	 Output a <form> with title and body input fields on the /blog/new page.
4.	 Create a new Server Action in a separate file and import and “connect” it to <form>. The Server

Action should retrieve the entered title and body text, create a new object, which also includes
an ID and creation date snapshot, and store that data in the posts.json file. Data must be
stored such that existing blog posts aren’t lost.

5.	 Update the Server Action to implement input validation and output the validation results above
the submit button.

6.	 Fetch the blog posts on the starting page and output a list of blog posts (title and date). Each
post should be clickable and take the user to the details page.

7.	 On the details page, fetch and output the blog post details (by using the ID).
8.	 Finally, redirect the user to the appropriate details page from inside the Server Action, after

a blog post is created.

Note

You can find a starting project snapshot for this activity at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/
activities/practice-1-start. When downloading this code, you’ll always download
the entire repository. Make sure to then navigate to the subfolder with the starting code
(activities/practice-1-start, in this case) to use the right code snapshot.

In the provided starting project, you can explore the globals.css file to get an idea of the
elements and element structure you might want to use to take advantage of the provided
styles. Of course, you can also set up and use your own styles.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/activities/practice-1-start

Chapter 16 465

The final page should look as shown in the following screenshots:

Figure 16.17: The home page, showing a list of blog posts

Figure 16.18: The /blog/new page, waiting for user input

React Server Components & Server Actions466

Figure 16.19: The /blog/<some-id> page displaying blog post details

Note

You can find the full code for this activity, and an example solution, here: https://
github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-
actions/activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/16-rsc-server-actions/activities/practice-1

17
Understanding React Suspense
& The use() Hook

Introduction
In Chapter 10, Behind the Scenes of React and Optimization Opportunities, in the Reducing Bundle Sizes
via Code Splitting (Lazy Loading) section, you learned about React’s <Suspense> component and how
it may be used in the context of lazy loading and code splitting to show fallback content while a code
bundle is being downloaded.

As explained there, the purpose of the Suspense component is to simplify the process of showing fall-
back content, which, in turn, can lead to a better user experience. Since staring at outdated content or
a blank page is not something most users appreciate, having a built-in feature that shows alternative
content is very convenient.

In this chapter, you’ll learn that React’s Suspense component is not limited to being used for code
splitting. Instead, it can also be used for data fetching to show some temporary content while data
is being loaded (e.g., from a database). Though, as you will also learn, Suspense can only be used for
data fetching if the data is fetched in a certain way.

In addition, this chapter will revisit the use() Hook, which was introduced in Chapter 11, Working with
Complex State. As you will learn, besides using it for getting access to context values, this Hook can be
used in conjunction with Suspense as well.

Learning Objectives

By the end of this chapter, you will be able to do the following:

•	 Describe the purpose and functionality of React’s Suspense feature
•	 Use Suspense with RSCs to show fallback content on a granular level
•	 Use Suspense for client components via React’s use() Hook
•	 Apply different Suspense strategies for data fetching and fallback content

Understanding React Suspense & The use() Hook468

Showing Granular Fallback Content with Suspense
When fetching data or downloading a resource (e.g., a code file), loading delays can occur—delays that
can lead to a bad user experience. You should therefore consider showing some temporary fallback
content while waiting for the requested resource.

For that reason, to simplify the process of rendering fallback content while waiting for some resource,
React offers its Suspense component. As shown in Chapter 10, Behind the Scenes of React and Optimization
Opportunities, you can use the Suspense component as a wrapper around React elements that fetch
some code or data. For example, when using it in the context of code splitting, you can show some
temporary fallback content like this:

import { lazy, Suspense, useState } from 'react';

const DateCalculator = lazy(() => import(
 './components/DateCalculator.jsx'
)
);

function App() {
 const [showDateCalc, setShowDateCalc] = useState(false);

 function handleOpenDateCalc() {
 setShowDateCalc(true);
 }

 return (
 <>
 <p>This app might be doing all kinds of things.</p>
 <p>
 But you can also open a calculator which calculates
 the difference between two dates.
 </p>
 <button onClick={handleOpenDateCalc}>Open Calculator</button>
 <Suspense fallback={<p>Loading...</p>}>
 {showDateCalc && <DateCalculator />}
 </Suspense>
 </>
);
}

Chapter 17 469

In this example (which is from a regular Vite-based React project), React’s Suspense component is
wrapped around the conditionally rendered DateCalculator component. DateCalculator is created
with the help of React’s lazy() function, which is used to lazily (i.e., on demand) load the code bundle
that belongs to this component.

As a result, the entire other page content is shown right from the start. Only the conditionally dis-
played DateCalculator component is replaced with the fallback content (<p>Loading...</p>) while
the code is being fetched. Thus, Suspense is used to render some fallback JSX code on a very granular
level. Instead of replacing the entire page or component markup with some temporary content, only
a small part of the UI is replaced.

Of course, Suspense therefore provides a functionality that would also be nice to have when fetching
data—after all, delays occur frequently there, too.

Using Suspense for Data Fetching with Next.js
As explained in the previous chapter, in the Managing Loading States with Next.js section, the process of
data fetching also often comes with waiting times that can negatively impact user experience. That’s
why, in that same section, you learned that Next.js allows you to define a loading.js file that contains
some fallback component that’s rendered during such a delay.

However, using that approach essentially replaces the entire page (or the main area of that page) with
the loading fallback component content. But that’s not always ideal—you instead might want to display
some loading fallback content on a more granular level when fetching data.

Thankfully, in Next.js projects, you can use Suspense in a similar way, as shown in the example from
the previous section, to wrap it around components that fetch data. Since Next.js supports HTTP re-
sponse streaming, it’s able to render the rest of the page immediately while streaming the content that
depends on the fetched data to the client side once it’s available. Until the data is loaded and available,
Suspense will render its defined fallback.

Therefore, coming back to the example from the Managing Loading States with Next.js section of Chapter
16, React Server Components & Server Actions, you can take advantage of Suspense by outsourcing the
data fetching code into a separate UserGoals component:

import fs from 'node:fs/promises';

async function fetchGoals() {
 await new Promise((resolve) => setTimeout(resolve, 3000)); // delay

 const goals = await fs.readFile('./data/user-goals.json', 'utf-8');
 return JSON.parse(goals);
}

export default async function UserGoals() {

Understanding React Suspense & The use() Hook470

 const fetchedGoals = await fetchGoals();

 return (

 {fetchedGoals.map((goal) => (
 <li key={goal}>{goal}
))}

);
}

This UserGoals component can then be wrapped with Suspense in the GoalsPage component like this:

import { Suspense } from 'react';

import UserGoals from '../../components/UserGoals';

export default async function GoalsPage() {
 return (
 <>
 <h1>Top User Goals</h1>
 <Suspense fallback={
 <p id="fallback">Fetching user goals...</p>}
 >
 <UserGoals />
 </Suspense>
 </>
);
}

This code now utilizes React’s Suspense component to show a fallback paragraph while the UserGoals
component is fetching data.

Note

You can find the complete demo project code on GitHub: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/
examples/02-data-fetching-suspense.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/examples/02-data-fetching-suspense
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/examples/02-data-fetching-suspense
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/examples/02-data-fetching-suspense

Chapter 17 471

As a result, when users navigate to /goals, they immediately see the title (the <h1> element) in com-
bination with the fallback content. There is no need for a separate loading.js file anymore.

Figure 17.1: The fallback content is shown as part of the target page, instead of entirely replacing it

However, the advantage of using Suspense in this situation is not just that the loading.js file isn’t need-
ed anymore. Instead, data fetching and fallback content can now be managed on a very granular level.

For example, in a more complex online shop application, you could have a component like this:

function ShopOverviewPage() {
 return (
 <>
 <header>
 <h1>Find your next deal!</h1>
 <MainNavigation />
 </header>
 <main>
 <Suspense fallback={<DailyDealSkeleton />}>
 <DailyDeal />
 </Suspense>
 <section id="search">
 <h2>Looking for something specific?</h2>
 <Search />
 </section>
 <Suspense fallback={<p>Fetching products...</p>}>
 <Products />
 </Suspense>
 </main>
 </>
);
}

Understanding React Suspense & The use() Hook472

In this example, the <header> and <section id="search"> elements are always visible and rendered.
On the other hand, <DailyDeal /> and <Products /> are only rendered once their data has been
fetched. Until then, their respective fallbacks are displayed.

Figure 17.2: Placeholders are shown initially until loaded data is streamed in and rendered to the
screen

<DailyDeal /> and <Products /> will be loaded and rendered independently from each other since
they’re wrapped by two different Suspense blocks. Consequently, users will immediately see the header
and search area, and then eventually see the daily deal and products—though either of the two may
load and render first.

What’s important about these examples is that the components wrapped by Suspense are RSCs that
use async/await. As you will learn in the next section, not all React components will interact with
the Suspense component. But React Server Components, in Next.js projects, will.

Using Suspense in Other React Projects—Possible, But Tricky
The previous section explored how you may take advantage of Suspense for data fetching with RSCs
in Next.js projects.

However, Suspense is not a Next.js-specific feature or concept—instead, it’s provided by React itself.
Consequently, you can use it in any React project to show fallback content while data is being fetched.

At least, that’s the theory. But as it turns out, you can’t use it with all components and data fetching
strategies.

Chapter 17 473

Suspense Does Not Work with useEffect()
Since fetching data via useEffect() is a common strategy, you might be inclined to use Suspense in
conjunction with this Hook to show some fallback content while data is being loaded via the effect
function.

For example, the following BlogPosts components uses useEffect() to load and display some blog
posts:

import { useEffect, useState } from 'react';

function BlogPosts() {
 const [posts, setPosts] = useState([]);
 useEffect(() => {
 async function fetchBlogPosts() {
 // simulate slow network
 await new Promise((resolve) => setTimeout(resolve, 3000));
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);
 const posts = await response.json();
 setPosts(posts);
 }

 fetchBlogPosts();
 }, []);
 return (

 {posts.map((post) => (
 <li key={post.id}>{post.title}
))}

);
}

You could wrap this component with Suspense like this:

import { Suspense } from 'react';

import BlogPosts from './components/BlogPosts.jsx';

function App() {
 return (
 <>

Understanding React Suspense & The use() Hook474

 <h1>All posts</h1>
 <Suspense fallback={<p>Fetching blog posts...</p>}>
 <BlogPosts />
 </Suspense>
 </>
);
}

Unfortunately, this will not work in the intended way, though. Instead of displaying the fallback con-
tent, nothing will be rendered while the data is being fetched.

The reason for this behavior is that Suspense is intended to suspend when fetching data during the
component rendering process—not when fetching inside of some effect function.

It helps to recall how useEffect() works (from Chapter 8, Handling Side Effects): the effect function is
executed after the component function is executed, i.e., after the first component render cycle is done.

As a result, you can’t use Suspense to show fallback content when fetching data via useEffect().
Instead, in those cases, you need to manually manage and use some loading state in the component
that performs the data fetching (i.e., by manually managing different state slices like isLoading—for
example, as explained and shown in Chapter 11, Working with Complex State, in the Limitations of us-
eState() and Managing State with useReducer() sections.

Fetching Data while Rendering—the Incorrect Way
Since Suspense intends to show fallback content while a component is fetching data during its ren-
dering process, you could try to re-write the BlogPosts component to look like this:

async function BlogPosts() {
 await new Promise((resolve) => setTimeout(resolve, 3000));
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);
 const posts = await response.json();

 return (

 {posts.map((post) => (
 <li key={post.id}>{post.title}
))}

);
}

Chapter 17 475

But trying to use this code will yield an error in the browser developer tools:

Figure 17.3: React complains about async components on the client side

React does not support the usage of async/await in client components. Only React Server Components
may use that syntax (and therefore return promises). Consequently, regular React projects, which are
not set up to support RSCs, can’t use this solution.

Of course, you could come up with a (problematic) alternative solution like this:

function BlogPosts() {
 const [posts, setPosts] = useState([]);
 new Promise(() => setTimeout(() => {
 return fetch(
 'https://jsonplaceholder.typicode.com/posts'
).then(response => response.json())
 .then(fetchedPosts => setPosts(fetchedPosts));
 }, 3000));

 return (

 {posts.map((post) => (
 <li key={post.id}>{post.title}
))}

);
}

But this approach was already discarded in Chapter 8, Handling Side Effects, in the What’s the Problem?
section—the code creates an infinite loop.

So, fetching data as part of a component’s rendering process is really difficult when not working with
RSCs.

Understanding React Suspense & The use() Hook476

Getting Suspense Support Is Tricky
Since Suspense requires data fetching to occur during the rendering process, which is difficult to set up
manually, the React documentation (https://react.dev/reference/react/Suspense#displaying-
a-fallback-while-content-is-loading) itself mentions that “only Suspense-enabled data sources will
activate the Suspense component,” further stating that those data sources include:

•	 Data fetching with Suspense-enabled frameworks like Relay and Next.js
•	 Lazy-loading components code with lazy()
•	 Reading the value of a Promise with use()

On the same page, the official documentation highlights that “Suspense-enabled data fetching without
the use of an opinionated framework is not yet supported.”

Therefore, unless you plan on building your own Suspense-enabled library, you either have to stick to
using Suspense for code-splitting (via lazy()), use a third-party framework or library that integrates
with Suspense, or explore the usage of that use() Hook.

Of course, the lazy() function (and how to use it with Suspense) was already covered in Chapter 10,
Behind the Scenes of React and Optimization Opportunities, in the Reducing Bundle Sizes via Code Splitting
(Lazy Loading) section. But what about the other two options: Suspense-enabled libraries and the
use() Hook?

Using Suspense for Data Fetching with Supporting Libraries
As you learned in the Using Suspense for Data Fetching with Next.js section, you can use Suspense for data
fetching when working with Next.js. But while Next.js is one of the most popular React frameworks
that supports Suspense, it’s not the only option you have.

For example, TanStack Query (formerly known as React Query) is another popular third-party library
that unlocks Suspense for data fetching. This library, unlike Next.js, is not a library that aims to help
with building full-stack React apps or running code on the server side, though. Instead, TanStack Query
is a library that’s all about helping with client-side data fetching, data mutations, and asynchronous
state management. Since it runs on the client side, it therefore works in React projects that do not
integrate with SSR and RSCs, too—although you can also use it in such projects.

Note

Documentation may change over time—and so may React. But even though the exact
wording may differ at the point of time you’re reading this, the way of using Suspense,
and the fact that it can’t be used without special libraries or features like lazy(), is highly
unlikely to change.

This chapter was written when React 19 was released. You can visit the official changelog of
this book to find out whether anything significant has changed since then: https://github.
com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md.

https://react.dev/reference/react/Suspense#displaying-a-fallback-while-content-is-loading
https://react.dev/reference/react/Suspense#displaying-a-fallback-while-content-is-loading
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md

Chapter 17 477

TanStack Query is a complex, feature-rich library—we could probably write an entire book about it.
But the following short code snippet (which is from a Vite-based project, not from a Next.js project)
shows how you may fetch data with the help of that library:

import { useSuspenseQuery } from '@tanstack/react-query';

async function fetchPosts() {
 await new Promise((resolve) => setTimeout(resolve, 3000));
 const response = await fetch('https://jsonplaceholder.typicode.com/posts');
 const posts = await response.json();
 return posts;
}

function BlogPosts() {
 const {data} = useSuspenseQuery({
 queryKey: ['posts'],
 queryFn: fetchPosts
 });

 return (

 {data.map((post) => (
 <li key={post.id}>{post.title}
))}

);
}

In this example, the BlogPosts component uses TanStack Query’s useSuspenseQuery() Hook, in
conjunction with a custom fetchPosts() function, to fetch data via an HTTP request. As the name
of the Hook implies, it integrates with React’s Suspense component.

As a result, the BlogPosts component can then be wrapped with Suspense like this:

import { Suspense } from 'react';

import BlogPosts from './components/BlogPosts.jsx';

function App() {
 return (
 <>
 <h1>All posts</h1>
 <Suspense fallback={<p>Fetching blog posts...</p>}>
 <BlogPosts />

Understanding React Suspense & The use() Hook478

 </Suspense>
 </>
);
}

As you can tell, Suspense is used in the same way it was used with lazy() or Next.js. So, its function-
ality and usage don’t change—if you’re wrapping it around a component that integrates with Suspense
(like BlogPost does, via TanStack Query’s useSuspenseQuery() Hook), Suspense can be used to output
some fallback content while some data fetching process is underway.

Of course, this is just a simple example. You can do more with TanStack Query, and there also are other
libraries that can be used in conjunction with Suspense. It’s just important to understand that there
are other options than Next.js. But it’s also crucial to keep in mind that not all code (and also not all
libraries) will work with Suspense.

Besides using libraries that directly integrate with Suspense (like TanStack Query via its
useSuspenseQuery() Hook), you can also use Suspense for data fetching with the help of React’s
built-in use() Hook.

use()ing Data while Rendering
The use() Hook offered by React is not limited to accessing context values, as shown in Chapter 11,
Working with Complex State—instead, it may also be used to read values from a promise.

Thus, you can use the use() Hook during a component’s rendering process to extract and use the value
of a promise. use() will automatically interact with any wrapping Suspense component and let it know
about the current status of the data fetching process (i.e., if the promise has been resolved or not).

The example from the Fetching Data while Rendering—the Incorrect Way section can therefore be ad-
justed to use the use() Hook like this:

import { use } from 'react';

async function fetchPosts() {
 await new Promise((resolve) => setTimeout(resolve, 3000));
 const response = await fetch(
 'https://jsonplaceholder.typicode.com/posts'
);
 const posts = await response.json();
 return posts;
}

Note

You can find the complete example project on GitHub: https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/
examples/05-tanstack-query.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/examples/05-tanstack-query
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/examples/05-tanstack-query
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/examples/05-tanstack-query

Chapter 17 479

function BlogPosts() {
 const posts = use(fetchPosts());

 return (

 {posts.map((post) => (
 <li key={post.id}>{post.title}
))}

);
}

The BlogPosts component is now no longer a component that uses async/await. Instead, it uses the
imported use() Hook to read the value of the promise produced by calling fetchPosts().

As mentioned, use() interacts with Suspense, hence BlogPosts can be wrapped with Suspense like this:

import { Suspense } from 'react';

import BlogPosts from './components/BlogPosts.jsx';

function App() {
 return (
 <>
 <h1>All posts</h1>
 <Suspense fallback={<p>Fetching blog posts...</p>}>
 <BlogPosts />
 </Suspense>
 </>
);
}

When running this code, it might work as intended (depending on the React version you’re using), but
it’s more likely to not yield any results or even show an error message in the browser developer tools:

Figure 17.4: The use() Hook only works with promises created by Suspense-compatible libraries

Understanding React Suspense & The use() Hook480

As explained by this error message, the use() Hook is not intended to be used with regular promises
as created in the previous example. Instead, it should be used on promises that are provided by Sus-
pense-compatible libraries or frameworks.

So, again, support from a third-party framework or library is needed. No matter if you try to use
Suspense with components that fetch data as part of the rendering process with or without use(),
you end up needing help.

Put in other words: to take advantage of Suspense, you either need to directly fetch data via a Sus-
pense-compatible library or framework, or you need to use the use() Hook on a promise that’s gen-
erated by a Suspense-compatible library or framework.

One such framework is, again, Next.js. Besides using Suspense around RSCs, as shown in the section
Using suspense for Data Fetching with Next.js, you can also use Suspense in conjunction with the use()
Hook on promises produced by Next.js.

Using use() with Promises Created by Next.js
Next.js projects are able to create promises that will work with use() and Suspense. To be precise,
any promise you create in an RSC and pass to a (client) component via props qualifies as a use()able
promise.

Consider this example code:

import fs from 'node:fs/promises';

import UserGoals from '../../components/UserGoals';

async function fetchGoals() {
 await new Promise((resolve) => setTimeout(resolve, 3000)); // delay

 const goals = await fs.readFile('./data/user-goals.json', 'utf-8');
 return JSON.parse(goals);
}

export default function GoalsPage() {
 const fetchGoalsPromise = fetchGoals();

Note

If you want to go against the official recommendation and try to build promises that support
use() and Suspense, you can explore the official Suspense demo projects linked in the of-
ficial React documentation (https://19.react.dev/reference/react/Suspense)—for
example, this project: https://codesandbox.io/p/sandbox/strange-black-6j7nnj.

Please note that, as mentioned in the documentation, the approach used in that demo
project uses unstable APIs and may not work with future React versions.

https://19.react.dev/reference/react/Suspense
https://codesandbox.io/p/sandbox/strange-black-6j7nnj

Chapter 17 481

 return (
 <>
 <h1>Top User Goals</h1>
 <UserGoals promise={fetchGoalsPromise} />
 </>
);
}

In this code snippet, a promise is created by calling fetchGoals() and stored in a constant called
fetchGoalsPromise. The created promise (fetchGoalsPromise) is then passed as a value for the
promise prop to the UserGoals component.

Along with another component, this UserGoals component is defined in the UserGoals.js file like this:

import { use, Suspense } from 'react';

function Goals({ fetchGoalsPromise }) {
 const goals = use(fetchGoalsPromise);

 return (

 {goals.map((goal) => (
 <li key={goal}>{goal}
))}

);
}

export default function UserGoals({ promise }) {
 return (
 <Suspense fallback={<p id="fallback">Fetching user goals...</p>}>
 <Goals fetchGoalsPromise={promise} />
 </Suspense>
);
}

In this code example, the UserGoals component uses Suspense to wrap the Goals component to which
it essentially forwards the received promise prop value (via the fetchGoalsPromise prop). The Goals
component then reads that promise value via the use() Hook.

Since the promise is created in an RSC (GoalsPage) that’s managed by Next.js, React will not complain
about this code—Next.js creates promises that work with use(). Instead, it will show the fallback
content (<p id="fallback">Fetching user goals...</p>) while data is being fetched and renders
the final user interface once the data has arrived and has been streamed to the client.

Understanding React Suspense & The use() Hook482

As explained before, any elements not wrapped by Suspense (i.e., the <h1> element, in this example)
will be displayed right from the start.

Figure 17.5: The fallback text is shown next to the title while data is fetched via use()

It’s also worth noting that both UserGoals and Goals are RSCs, too—nonetheless, they can use the
use() Hook.

Normally, Hooks can’t be used in RSCs but the use() Hook is special. Just as it may be used inside
if statements or loops (as explained in Chapter 11, Working with Complex State), it can be executed in
both server and client components.

However, when working with a server component, you can also simply use async/await instead of
use(). Thus, the use() Hook is really only useful when it comes to reading promise values in client
components—there, async/await is not available.

Using use() in Client Components
Besides using it for accessing context, the use() Hook was introduced to help with reading values
from promises in client components—i.e., in situations where you can’t use async/await.

Consider this updated user goals example, where some state is managed and a side effect is triggered:

'use client';

import { use, Suspense, useEffect, useState } from 'react';

// sendAnalytics() is a dummy function that just logs to the console
import { sendAnalytics } from '../lib/analytics';

function Goals({ fetchGoalsPromise }) {
 const [mainGoal, setMainGoal] = useState();
 const goals = use(fetchGoalsPromise);

 function handleSetMainGoal(goal) {
 setMainGoal(goal);
 }

 return (

Chapter 17 483

 {goals.map((goal) => (
 <li
 key={goal}
 id={goal === mainGoal ? 'main-goal' : undefined}
 onClick={() => handleSetMainGoal(goal)}
 >
 {goal}

))}

);
}

export default function UserGoals({ promise }) {
 useEffect(() => {
 sendAnalytics('user-goals-loaded', navigator.userAgent);
 }, []);

 return (
 <Suspense fallback={<p id="fallback">Fetching user goals...</p>}>
 <Goals fetchGoalsPromise={promise} />
 </Suspense>
);
}

In this example, the Goals component uses useState() to manage the information of which goal was
marked as the main goal by the user. Furthermore, the UserGoals component (which uses Suspense)
utilizes the useEffect() Hook to send an analytics event once the component renders (i.e., before the
suspended Goals component is displayed). Due to the usage of all these client-side exclusive features,
the 'use client' directive is required.

As a result, async/await can’t be used in the Goals and UserGoals components. But since the use()
Hook can be used in client components, it offers a possible solution for situations like this. And, since
this example is from a Next.js application, React will not complain about the kind of promise being
consumed by use(). Instead, this example code would lead to the fallback content being displayed
while the goals data is fetched.

Suspense Usage Patterns
As you have learned, the Suspense component can be wrapped around components that fetch data as
part of their rendering process—as long as they do it in a compliant way.

Understanding React Suspense & The use() Hook484

Of course, in many projects, you may have multiple components that fetch data and that should display
some fallback content while doing so. Thankfully, you can use the Suspense component as often as
needed—you can even combine multiple Suspense components with each other.

Revealing Content Together
Thus far, in all examples, Suspense was always wrapped around exactly one component. But there is
no rule that would stop you from wrapping Suspense around multiple components.

For example, the following code is valid:

function Shop() {
 return (
 <>
 <h1>Welcome to our shop!</h1>
 <Suspense fallback={<p>Fetching shop data...</p>}>
 <DailyDeal />
 <Products />
 </Suspense>
 </>
);
}

In this code snippet, data fetching in the DailyDeal and Products components starts simultaneously.
Since both components are wrapped by one single Suspense component, the fallback content is dis-
played unti both components are done fetching data. So, if one component (e.g., DailyDeal) is done
after one second, and the other component (Products) takes five seconds, both components are only
revealed (and replace the fallback content) after five seconds.

Figure 17.6: Data is fetched in parallel, and fallback content is shown via Suspense until all compo-
nents are done

Chapter 17 485

Revealing Content as Soon as Possible
Of course, there are situations where you might want to display fallback content for multiple com-
ponents, but where you don’t want to wait for all components to finish fetching data before showing
any fetched content.

In such situations, you can use Suspense multiple times:

function Shop() {
 return (
 <>
 <h1>Welcome to our shop!</h1>
 <Suspense fallback={<p>Fetching daily deal data...</p>}>
 <DailyDeal />
 </Suspense>
 <Suspense fallback={<p>Fetching products data...</p>}>
 <Products />
 </Suspense>
 </>
);
}

In this adjusted code example, DailyDeal and Products are wrapped with two different instances of
the Suspense component. Thus, each component’s content will be revealed once available, indepen-
dent from the other component’s data fetching status.

Figure 17.7: Each component replaces its fallback content with the final content once it’s done fetching

Understanding React Suspense & The use() Hook486

Nesting Suspended Content
Besides fetching in parallel, you can also create more complex loading sequences with nested Suspense
components.

Consider this example:

function Shop() {
 return (
 <>
 <h1>Welcome to our shop!</h1>
 <Suspense fallback={<p>Fetching shop data...</p>}>
 <DailyDeal />
 <Suspense fallback={<p>Fetching products data...</p>}>
 <Products />
 </Suspense>
 </Suspense>
 </>
);
}

In this case, initially, the paragraph with the text Fetching shop data is displayed. Behind the scenes,
data fetching in the DailyDeal and Products components starts.

Once the DailyDeal component is done fetching data, its content is displayed. At the same time, below
DailyDeal, the fallback of the nested Suspense block is rendered if the Products component is still
fetching data.

Finally, once Products has received its data, the inner Suspense component’s fallback content is
removed, and the Products component is rendered instead.

Chapter 17 487

Figure 17.8: Nested Suspense blocks lead to sequential data fetching and content revelation

Therefore, as you can see, you can use Suspense multiple times. In addition, you can combine differ-
ent Suspense components such that you can create exactly the loading sequence and user experience
you need.

Should You Fetch Data via Suspense or useEffect()?
As you learned throughout this chapter, you can use Suspense in conjunction with RSCs, Suspense-
enabled libraries, or the use() Hook (which also requires supporting libraries) to fetch data and show
some fallback content while data is being fetched.

Alternatively, as covered in Chapter 11, Working with Complex State, you can also fetch data and manually
show fallback content via useEffect() and useState() or useReducer(). In that case, you essentially
manage the state that determines whether to show some loading fallback content on your own; with
Suspense, React does that for you.

Understanding React Suspense & The use() Hook488

Consequently, it’s up to you which approach you prefer. Using Suspense can save you quite a bit of
code since you don’t need to manage these different state slices manually. Combined with frameworks
like Next.js or libraries like TanStack Query, data fetching can therefore become significantly easier
than when doing it manually via useEffect(). In addition, Suspense integrates with RSCs and SSR
and therefore can be used to fetch data on the server side—unlike useEffect(), which has no effect
(no pun intended) on the server side.

However, if you’re not using any library or framework that supports Suspense or use()-enabled promis-
es, you don’t have much of a choice other than to fall back to useEffect() (and hence not use Suspense
for data fetching). This may change with future React versions, since they might provide tools that help
with building promises that work with use(). But for the time being, it’s basically a decision between
using (the right) libraries and Suspense or no libraries and useEffect().

Summary and Key Takeaways
•	 The Suspense component can be used to show fallback content while data is fetched, or code

is downloaded.
•	 For data fetching, Suspense only works with components that fetch data via Suspense-enabled

data sources during their rendering process.
•	 Libraries and frameworks like TanStack Query and Next.js support using Suspense for data

fetching.
•	 Using Next.js, you can wrap Suspense around server components that use async/await.
•	 Alternatively, Suspense can be wrapped around components that use React’s use() Hook for

reading a promise value.
•	 use() should only be used to read values of promises that resolve with Suspense in mind—e.g.,

promises created by Suspense-compatible third-party libraries.
•	 When using Next.js, promises created in RSCs and passed to (client) components via props

may be consumed via use().
•	 The use() Hook helps with reading values and using Suspense in components that also need

to use client-specific features like useState().
•	 Suspense can be wrapped around as many components as needed to fetch data and display

content simultaneously.
•	 Suspense can also be nested to create complex loading sequences.

What’s Next?
React’s Suspense feature can be very useful since it helps with granularly showing fallback content
while code or data is being fetched. At the same time, when it comes to data fetching, it can be tricky
to use Suspense since it only works with components that fetch data in the correct way (e.g., via the
use() Hook, if the promise passed to the Hook is Suspense-compatible).

Chapter 17 489

That’s why this chapter also explored how to use Suspense and use() with Next.js, and how that frame-
work simplifies the process of fetching data and showing fallback content with Suspense and use().

Despite the potential complexity, Suspense can help with creating great user experiences since it
allows you to easily show fallback content while a resource is pending.

This chapter also concludes the list of core React features you must know about as a React developer.
Of course, you can always dive deeper to explore more patterns and third-party libraries. The next
(and last) chapter will share some resources and possible next steps you could dive into after finishing
this book.

Test Your Knowledge!
Test your knowledge of the concepts covered in this chapter by answering the following ques-
tions. You can then compare your answers to examples that can be found at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/blob/17-suspense-use/exercises/questions-
answers.md:

1.	 What’s the purpose of React’s Suspense component?
2.	 How do components need to fetch data in order to work with Suspense?
3.	 How may Suspense be used when working with Next.js?
4.	 What’s the purpose of the use() Hook?
5.	 Which kind of promises can be read by the use() Hook?
6.	 List three ways of using Suspense with multiple components.

Apply What You Learned
With all the newly gained knowledge about Next.js, it’s time to apply it to a real demo project.

In the following section, you’ll find an activity that allows you to practice working with Next.js and
Suspense. As always, you will also need to employ some of the concepts covered in earlier chapters.

Activity 17.1: Implement Suspense in the Mini Blog
In this activity, your job is to build upon the finished project from Activity 16.1. There, a very simple
blog was built. Now, your task is to enhance this blog to show some fallback content while the list of
blog posts or the details for an individual blog post are loading. To prove your knowledge, you should
fetch data via async/await on the starting page (/), and via the use() Hook on the blog/<some-id> page.

In addition, the list of available blog posts should also be displayed below the details for a single blog
post. Of course, while fetching that list data, some fallback text must be displayed—though, that text
should be displayed independently from the fallback content for the blog post details.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/17-suspense-use/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/17-suspense-use/exercises/questions-answers.md
https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/17-suspense-use/exercises/questions-answers.md

Understanding React Suspense & The use() Hook490

After downloading the code and running npm install in the project folder to install all required
dependencies, the solution steps are as follows:

1.	 Outsource the logic for fetching and displaying a list of posts into a separate component.
2.	 Use that component on the starting page and use React’s Suspense component to display some

fitting fallback content while the blog posts are being fetched.
3.	 Also, outsource the logic for retrieving and rendering the details for a single blog post into a

separate client (!) component. Output that newly created component on the /blog/<some-id>
page.

4.	 Pass a promise for fetching the details of a blog to that newly created component, and use
the use() Hook to read its value. Also, take advantage of the Suspense component to output
some fallback content.

5.	 Re-use the component that fetches and renders a list of blog posts and output it below the
blog post details on the /blog/<some-id> page. Use Suspense to show some fallback content,
independently from the data fetching status of the blog post details.

The final page should look as shown in the following screenshots:

Figure 17.9: Fallback content is shown while the blog posts are fetched

Note

You can find a starting project snapshot for this activity at https://github.com/
mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/
activities/practice-1-start. When downloading this code, you’ll always download
the entire repository. Make sure to then navigate to the subfolder with the starting code
(activities/practice-1-start, in this case) to use the right code snapshot.

In the provided starting project, you’ll find functions for fetching all blog posts and a single
post. These functions contain artificial delays to simulate slow servers.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/activities/practice-1-start
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/activities/practice-1-start

Chapter 17 491

Figure 17.10: Fallback content is shown while fetching blog post details and the list of blog posts

Note

You can find the full code for this activity, and an example solution, here: https://github.
com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/
activities/practice-1.

https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/activities/practice-1
https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/17-suspense-use/activities/practice-1

18
Next Steps and Further Resources

Introduction
With this book, you’ve gotten a thorough (re-)introduction to the key React concepts you must know in
order to work with React successfully, providing both theoretical and practical guidance for compo-
nents, props, state, context, React Hooks, routing, server-side React, and many other crucial concepts.

But React is more than just a collection of concepts and ideas. It powers an entire ecosystem of
third-party libraries that help with many common React-specific problems. There is also a huge React
community that shares solutions for common problems or popular patterns.

In this last, brief chapter, you’ll learn about some of the most important and popular third-party li-
braries you might want to explore. You will also be introduced to other great resources that help with
learning React. In addition, this chapter will share some recommendations on how best to proceed
and continue to grow as a React developer after finishing this book.

How Should You Proceed?
Use the knowledge you gained throughout this book as a foundation to build upon. Dive deeper into
Next.js, explore other popular React libraries, or learn more about React alternatives like Angular or
Vue. Web development offers a broad range of technologies, languages, libraries, patterns, and con-
cepts. And while this can sometimes feel overwhelming, it’s also a vast pool of opportunities to grow
as a developer and become better at solving complex problems.

Learning Objectives

By the end of this chapter, you will know the following:

•	 How to make the move from reading the book to applying your knowledge
•	 How to best practice what you’ve learned throughout this book
•	 Which React topics you can explore next
•	 Which popular third-party React packages might be worth a closer look

Next Steps and Further Resources494

But besides learning more about React and related packages, it’s also important to apply your knowl-
edge and practice what you’ve learned. Don’t just read book after book. Instead, use your newly gained
skills to build some demo projects.

You don’t have to build the next Amazon or TikTok. There’s a reason why applications like these are
built by huge teams. But you should build small demo projects that focus on a couple of core problems.
You could, for example, build a very basic website that allows users to store and view their daily goals,
or build a basic Meetups page where visitors can organize and join meetup events.

To put it simply: practice is key. You must apply what you’ve learned and build stuff. Because by building
demo projects, you’ll automatically encounter problems that you’ll have to solve without a solution at
hand. You’ll have to try out different approaches and search the internet for possible (partial) solutions.
Ultimately, this is how you learn the most and how you develop your problem-solving skills.

You won’t find a solution for all problems in this book, but this book does give you the basic tools and
building blocks that will help you with those problems. Solutions are then built by combining these
building blocks and by building upon the knowledge gathered throughout this book.

Become a Fullstack React Developer
This book already covered crucial concepts to get you started with React-based backend development.
Chapters 15, 16, and 17 explored server-side rendering, Next.js, server components and actions, and
related features that will be needed to build fullstack React apps.

Consequently, diving deeper into Next.js might be an interesting next step. With the help of the official
documentation or online courses like my Next.js & React – The Complete Guide course, you can acquire
the necessary knowledge to become a fullstack React developer.

And it’s not just Next.js: you can also explore alternatives like Remix and React Router (which is re-
ceiving more fullstack capabilities) or TanStack Start. If you don’t care about having a fully integrated
fullstack development experience as, for example, provided by Next.js, you can also learn more about
connecting a decoupled backend to a React frontend—i.e., you can learn how to build and connect a
separate backend (REST or GraphQL) API with Node.js or any other backend language.

Becoming a fullstack developer is not something you have to do, though. It’s an option, but depend-
ing on your personal preferences or your role in a team, it might not be the right option for you. It’s
just important to know that building fullstack applications with React is one possible path you could
explore—and that it’s a path that became considerably easier with Next.js and similar frameworks.
Either way, as mentioned before, you should also apply your React knowledge and practice by building
demo projects, no matter whether you’re diving deeper into fullstack development or not.

Interesting Problems to Explore
So, which problems and demo apps could you explore and try to build?

Chapter 18 495

In general, you can try to build (simplified) clones of popular web apps (such as a highly simplified
version of Amazon). Ultimately, your imagination is the limit, but in the following sections, you will
find details and advice for three project ideas and the challenges that come with them.

Build a Shopping Cart
A very common type of website is an online shop. You can find online shops for all kinds of products—
ranging from physical goods such as books, clothing, or furniture to digital products such as video
games or movies—and building such an online shop would be an interesting project idea and challenge.

Of course, online shops do come with many features that can’t be built with client-side React alone.
For example, the whole payment process is mostly a backend task where requests must be handled
by servers. Inventory management would be another feature that takes place in databases and on
servers, and not in the browsers of your website visitors. Consequently, you can use Next.js (or one
of the alternatives mentioned earlier in this chapter) to take care of this backend functionality and
thus build a fullstack React application. But even if you don’t want to dive into fullstack development,
online shops contain many features that require interactive user interfaces (and, therefore, benefit
from using React’s client-side features). For example, you can set up different pages that show lists
of available products, product details, or the current status of an order, as you learned in Chapter 13,
Multipage Apps with React Router. You also typically have shopping carts on websites. Building such a
cart, combined with the functionality of adding and removing items, would similarly utilize several
React features—for example, state management, as explained in Chapter 4, Working with Events and State.

It all starts with having a couple of pages (routes) for dummy products (that are hardcoded into the
frontend code and not fetched from some backend), product details, and the shopping cart itself.
The shopping cart displays items that need to be managed via app-wide state (e.g., via context, as
covered in Chapter 11, Working with Complex State), as website visitors must be able to add items to the
cart from the product detail page. You will also need a broad variety of React components—many of
which must be reusable (e.g., the individual shopping cart items that are displayed). Your knowledge
of React components and props from Chapter 2, Understanding React Components and JSX, and Chapter
3, Components and Props, will help with that.

The shopping cart state is also a non-trivial state. A simple list of products typically won’t do the
trick—though you can, of course, at least apply your knowledge from Chapter 5, Rendering Lists and
Conditional Content. Instead, you must check whether an item is already part of the cart or if it’s added
for the first time. If it’s part of the cart already, you must update the quantity of the cart item. Of course,
you’ll also need to ensure that users are able to remove items from the cart or reduce the quantity of an
item. And if you want to get even fancier, you can even simulate price changes that must be factored
in when updating the shopping cart state.

As you can see, this extremely simple dummy online shop already offers quite a bit of complexity. Of
course, as mentioned earlier, you could also add backend functionality and store dummy products in
a database. If you want to, you can dive deeper into Next.js to build a more complex fullstack appli-
cation based on React. This allows you to apply the knowledge you gained in Chapter 15, Server-side
Rendering & Building Fullstack Apps with Next.js, and Chapter 16, React Server Components & Server Actions.

Next Steps and Further Resources496

Build an Application’s Authentication System (User Signup and Login)
A lot of websites allow users to sign up or log in. For many websites, user authentication is required
before performing certain tasks. For example, you must create a Google account before uploading
videos to YouTube or using Gmail (and many other Google services). Similarly, an account is typically
needed before taking paid online courses or buying (digital) video games online. You also can’t perform
online banking without being logged in. And that’s just a short list; many more examples could be added,
but you get the idea. User authentication is required for a broad variety of reasons on many websites.

And on even more websites, it’s optionally available. For example, you might be able to order products
as a guest, but you benefit from extra advantages when creating an account (e.g., you may track your
order history or collect reward points).

Of course, building your own version of YouTube is much too challenging to be a good practice project.
There’s a reason why Google has thousands of developers on its payroll. However, you can identify
and clone individual features, such as user authentication.

Build your own user authentication system with React. Make sure that users can sign up and log in.
Add a few example pages (routes) to your website and find a way of making some pages only available
to logged-in users. These targets might not sound like much, but you will actually face quite a lot of
challenges along the way—challenges that force you to find solutions for brand-new problems.

While you could just use some dummy (client-side) logic in your React app code to simulate HTTP
requests that are sent to your servers behind the scenes, you could also add a real demo backend
instead. That backend would need to store user accounts in a database, validate login requests, and
send back authentication tokens that inform the React frontend about the current authentication
status of a user. In your React app, these HTTP requests would be treated as side effects, as covered
in Chapter 8, Handling Side Effects.

Again, if you want to use a real backend, you’ll also need to dive into backend development and either
build a separate server-side application or use Next.js (or any similar fullstack React framework). Al-
ternatively, you can also use services like Firebase, Supabase, Auth0, or one of the many other services
that provide authentication backends for frontend applications. Either way, you can explore how to
connect your React app to such a backend.

As you can tell, this “simple” project idea (or, rather, feature idea) presents a lot of challenges and
will require you to build on your React knowledge and find solutions for a broad variety of problems.

Build an Event Management Website
If you first were to build your own shopping cart system and get started with user authentication, you
could then take it a step further and build a more complex website that combines these features (and
offers new, additional features).

One such project idea would be an event management site. This is a website on which users can create
accounts and, once they’re logged in, events. All visitors can then browse these events and register
for them. It would be up to you whether registration as a guest (without creating an account first) is
possible or not.

Chapter 18 497

It’s also your choice whether you want to add backend logic (that is, a server that handles requests
and stores users and events in a database) or you will simply store all data in your React application
(via the app-wide state). If you don’t add a backend, all data will be lost whenever the page is reloaded,
and you can’t see the events created by other users on other machines, but you can still practice all
these key React features.

There are many React features that are needed for this kind of dummy website: reusable components,
pages (routes), component-specific and app-wide state, handling and validating user input, displaying
conditional and list data, and much more.

Again, this is clearly not an exhaustive list of examples. You can build whatever you want. Be creative
and experiment because you’ll only master React if you use it to solve problems.

Common and Popular React Libraries
No matter which kind of React app you’re building, you’ll encounter many problems and challenges
along the way. From handling and validating user input to sending HTTP requests, complex applica-
tions come with many challenges.

You can solve all challenges on your own and even write all the (React) code that’s needed on your own.
And for practicing, this might indeed be a good idea. But as you’re building more and more complex
apps, it might make sense to outsource certain problems.

Thankfully, React features a rich and vibrant ecosystem that offers third-party packages that solve all
kinds of common problems. Here’s a brief, non-exhaustive list of popular third-party libraries that
might be helpful:

•	 TanStack Query: A very popular library that helps with data fetching, caching, and manage-
ment in React apps (https://tanstack.com/query/latest).

•	 Framer Motion: A React-specific library that allows you to build and implement powerful,
visually pleasing animations into your React apps (https://www.framer.com/motion/).

•	 React Hook Form: A library that simplifies the process of handling and validating user input
(https://react-hook-form.com/).

•	 Formik: Another popular library that helps with form input handling and validation (https://
formik.org/).

•	 Axios: A general JavaScript library that simplifies the process of sending HTTP requests and
handling responses (https://axios-http.com/).

•	 Redux: In the past, this was an essential React library. Nowadays, it can still be important
as it can greatly simplify the management of (complex) cross-component or app-wide state
(https://redux.js.org/).

•	 Zustand: If you are in need of an extra library that helps with managing state in React apps,
you can also explore Zustand—a very popular alternative to Redux (https://zustand-demo.
pmnd.rs/).

https://tanstack.com/query/latest
https://www.framer.com/motion/
https://react-hook-form.com/
https://formik.org/
https://formik.org/
https://axios-http.com/
https://redux.js.org/
https://zustand-demo.pmnd.rs/
https://zustand-demo.pmnd.rs/

Next Steps and Further Resources498

This is just a short list of some helpful and popular libraries. Since there’s an endless number of
potential challenges, you could also compile an infinite list of libraries. Search engines and Stack
Overflow (a message board for developers) are your friends when it comes to finding more libraries
that solve other problems.

Using TypeScript
You may also consider using TypeScript, instead of plain JavaScript, for your React projects.

TypeScript is a JavaScript superset that adds strong and strict typing. As a result, using TypeScript can
help you catch and avoid certain errors related to missing values or incorrect value types.

You can get started with TypeScript for React with the help of the official documentation (https://
react.dev/learn/typescript) or dedicated online courses or tutorials.

Other Resources
As mentioned, React does have a highly vibrant ecosystem—and not just when it comes to third-party
libraries. You’ll also find thousands of blog posts, discussing all kinds of best practices, patterns, ideas,
and solutions to possible problems. Searching for the right keywords (such as React form validation
with Hooks) will almost always yield interesting articles or helpful libraries.

You’ll also find plenty of paid online courses, such as the React – The Complete Guide course at https://
www.udemy.com/course/react-the-complete-guide-incl-redux/, and free tutorials on YouTube.

The official documentation is another great place to explore as it contains deep dives into core topics
as well as more tutorial articles: https://react.dev/.

Beyond React for Web Applications
This book focused on using React to build websites. This was for a couple of reasons. The first is that
React, historically, was created to simplify the process of building complex web user interfaces, and
React is powering more and more websites every day. It’s one of the most widely used client-side web
development libraries and is more popular than ever before.

But it also makes sense to learn how to use React for web development because you need no extra
tools—only a text editor and a browser.

That said, React can be used to build user interfaces outside the browser and websites as well. With
React Native and Ionic for React, you have two very popular projects and libraries that use React to
build native mobile apps for iOS and Android.

Therefore, after learning all these React essentials, it makes a lot of sense to also explore these projects.
Pick up some React Native or Ionic courses (or use the official documentation) to learn how you can
use all the React concepts covered in this book to build real native mobile apps that can be distributed
through the platform app stores.

https://react.dev/learn/typescript
https://react.dev/learn/typescript
https://www.udemy.com/course/react-the-complete-guide-incl-redux/
https://www.udemy.com/course/react-the-complete-guide-incl-redux/
https://react.dev/

Chapter 18 499

React can be used to build all kinds of interactive user interfaces for various platforms. Now that
you’ve finished this book, you have the tools you need to build your next project with React—no matter
which platform it targets.

Final Words
With all the concepts discussed throughout this book, as well as the extra resources and starting points
to dive deeper, you are well prepared to build feature-rich and highly user-friendly web applications
with React.

No matter if it’s a simple blog or a complex Software-as-a-Service solution, you now know the key
React concepts you need in order to build a React-driven web app your users will love.

I hope you got a lot out of this book. Please share any feedback you have, for example, via X (@maxedapps)
or by sending an email to customercare@packt.com.

Join Us on Discord
Read this book alongside other users, AI experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions,
and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/ReactKeyConcepts2e

https://packt.link/ReactKeyConcepts2e

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as in-
dustry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why Subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals
•	 Improve your learning with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Fully searchable for easy access to vital information
•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packt.com

www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learning Angular

Aristeidis Bampakos

ISBN: 9781835087480

•	 Use the Angular CLI to scaffold, build, and deploy new Angular applications
•	 Create Angular applications using standalone APIs
•	 Build rich components with Angular template syntax
•	 Apply reactivity patterns with the RxJS library and Signals
•	 Craft beautiful user interfaces using Angular Material
•	 Create HTTP data services to access APIs and provide data to components
•	 Improve your debugging and error handling skills during runtime and development
•	 Optimize application performance with SSR and hydration techniques

https://www.packtpub.com/en-us/product/learning-angular-9781835081556

Other Books You May Enjoy504

Responsive Web Design with HTML5 and CSS

Ben Frain None

ISBN: 9781803242712

•	 Use media queries, including detection for touch/mouse and color preference
•	 Learn HTML semantics and author accessible markup
•	 Facilitate different images depending on screen size or resolution
•	 Write the latest color functions, mix colors, and choose the most accessible ones
•	 Use SVGs in designs to provide resolution-independent images
•	 Create and use CSS custom properties, making use of new CSS functions including ‘clamp’,

‘min’, and ‘max’
•	 Add validation and interface elements to HTML forms
•	 Enhance interface elements with filters, shadows, and animations

https://www.packtpub.com/en-us/product/responsive-web-design-with-html5-and-css-9781803231723

Other Books You May Enjoy 505

Mastering Node.js Web Development

Adam Freeman

ISBN: 9781804615072

•	 Process HTTP requests and perform file operations
•	 Create RESTful web services that can be consumed by client-side apps
•	 Work with server apps serving JavaScript clients, such as React and Angular
•	 Leverage Node.js to work with popular databases
•	 Apply practical knowledge through building the SportsStore project
•	 Authenticate users and authorize access to application features

https://www.packtpub.com/en-us/product/mastering-nodejs-web-development-9781837637355

Share Your Thoughts
Now you’ve finished React Key Concepts, Second Edition, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

https://packt.link/r/183620227X
authors.packtpub.com

Index

A
actions 207

dispatching 293-296
advanced data fetching

with Next.js 451
application programming interface (API) 174
App Router 408, 409
array destructuring 64
async() function

reference link 175
asynchronous actions

versus synchronous actions 216
authentication system

building 496
await() function

reference link 175
Axios

reference link 497

B
Bootstrap CSS framework 137
built-in components 26, 27
built-in request interface

reference link 368

C
Cascading Style Sheets (CSS) 117
children property 46, 47
class-based components 21
client actions 214
client components 433

versus React Server Components (RSC)s 440
client-side React 440-442
client-side React apps

disadvantages 402
issues 402

code debugging 262-265
component evaluations 236-238
component functions 22

calling 238
naming conventions 27, 28

components 18, 43
anatomy 19-21
built-in components 26, 27
need for 18
props, consuming in 45, 46
props, passing to 44
props, using in 44
selecting, for props 47
significance 43, 44
splitting 37

Index508

Component Updates 236-238
conditional content 90

examples 90
conditional styles 126
conditional ternary operators 94
content

rendering, conditionally 90-93
context access

custom Hooks, using 321, 322
context API

changing, from nested components 283, 284
code completion 285
context logic, outsourcing 286, 287
context values, managing 276-281
context values, providing 276-281
lift state up 285
multiple context, combining 287
useState(), limitations 288-291
using 284
using, in nested components 281, 282
using, to handle multi-component

state 275, 276
controlled components

versus uncontrolled components 160-163
Cross-Component State

problem 272-275
CSS-in-JS solution 135
CSS styling frameworks 140
CSS styling libraries 140
custom components

Refs 154-160
custom Hooks 301-308

building 303, 305
flexible feature 308
parameters 309
return values 310, 311
using, for context access 320, 322

custom Hooks, example 312, 314
first version, building 314, 315
return values 316, 317
reusability, improving 317-320

D
data

loading, for Dynamic Routes 366, 367
loading, with React Router 361-363

data entity 37
data fetching 360, 389-393

via Suspense 487
via useEffect() 487

data loading 393-395
data mutations 453

handling, with Server Actions 453
data submission 376-379, 389-393

<Form> triggers 385
action(), working with 380-383
current navigation status 386, 387
data returning 383, 385
Form Data, working with 380-383
Forms, submitting 388, 389

declarative code
used, by React 6-9

dependencies function 182, 183
functions as dependencies 189-194
unnecessary dependencies 183-185

directive 418
Document Object Model (DOM) 4, 121, 145

accessing, with Refs 151-154
manipulating, with React 9, 10
reference link 4

DOM API 4
dynamic content 34

outputting 34

Index 509

Dynamic Routes 343, 344
dynamic links, creating 346, 347
programmatic navigation 348-351
route parameters, extracting 345, 346
used, for loading data 366, 367

dynamic styles 126

E
effect function 182, 183

after effects, cleaning up 185-188
asynchronous code 201, 202
multiple effects, dealing with 189
rules of Hooks 202
unnecessary effect execution,

avoiding 194-200
EJS (Embedded JavaScript templates) 19
element tags

setting, conditionally 98, 99
entry point 23
error handling 374, 376
event management website

building 496

F
fetcher object 391

load() 391
submit() 391

fetch() function
reference link 175

first-class objects 25
fixed configuration options

customizing 130, 131
form actions 80, 207, 214
Formik

reference link 497

form submissions state
managing 219
pending UI state, handling with

useFormStatus() 224, 225
UI state, updating with

useActionState() 219-221
form submissions with actions

handling 214, 215
synchronous actions, versus asynchronous

actions 215, 216
form submissions without actions

handling 208
solution 213, 214
user input, extracting 208

Framer Motion
reference link 497

fullstack React developer 494
functional components 21

G
granular fallback content

displaying, with Suspense 468, 469

H
Hooks 21, 63

rules 203
HTML 28
HTML element style property

reference link 122
HTTP requests 178, 179

sending, without React Router 361

I
images

rendering 35, 36
integrated development environment (IDE) 285
internal data 62

Index510

J
JavaScript CSS property names

reference link 122
JavaScript Minifier Tool

reference link 5
JavaScript styling frameworks 140
JavaScript styling libraries 140
JSX 6, 28-30

React without JSX, using 30, 31
JSX elements

closing tag 33
regular JavaScript values 31-33

K
keys 109, 110

L
layout routes 335, 368, 371

data, reusing 372-374
example 369

list data
examples 90
mapping 102, 104
outputting 100-102

list items
issue 106-109

lists
updating 104, 105

loader()
params property 367
request property 367

loader() function 363

M
memo() function 249

multiple props
dealing with 48, 49

multiple state values
merged state objects, managing 69-71
state slices, using 68, 69
state update, based on previous state 71-74
two-way binding 75, 76
working with 67

N
nested routes 335
Next.js 407, 408

dynamic routes, handling 420-423
exploring 424
file-based routes, working with 410, 411
filename conventions 424
internal navigation, managing 415
layouts, working with 412-414
loading.js files, defining 451-453
Next.js 11
regular components, creating 418-420
Suspense for data fetching, using 469-472
used, for advanced data fetching 451
used, for server-side rendering 411, 412

Next.js, internal navigation
active links, highlighting 415-417
managing 415
use client directive, using 415-417

Next.js projects
creating 408, 409

Node.js (LTS)
reference link 11

normal component
versus route component 341, 342

npm 1
reference link 13

Index 511

O
object destructuring 49
optimistic updates

performing 226-230

P
params property 367
PascalCase naming convention 27
pending UI state

handling, with useFormStatus() 224, 225
managing, with useActionState() 222-224

portals 163-165
using, for solving issue 165, 167

pre-processing/transpilation 6
prop chains 51
prop drilling 51, 274

limitations 274
props 37, 46

children property 46, 47
components, selecting for 47
consuming, in component 45, 46
passing, to components 44
spreading 49-51
using, in components 44

R
React 1, 2, 65, 66

Allowed State Value Types 67
DOM, manipulating 9, 10
naming conventions 66, 67
reference link 2
using, declarative code 6-9
using, without JSX 30, 31

React apps
problem 174-176

React apps styling
components, building with customizable

styles 129, 130
conditional styles 126, 127
CSS class styles, setting 123, 124
dynamic styles, setting 124-126
inline styles, using 121, 122
multiple dynamic CSS classes,

combining 127-129
multiple inline style objects, merging 129
working 118-121

React Compiler
reference link 254

React Developer Tools 262-265
React feature

Portals 163-165
React for Web Applications 498
React Hook Form

reference link 497
React Hooks 21
React.js 1
React libraries 497
React Project

creating, with Vite 11-13
React Query 476
React Router 326-329

client-side code 368
data load, accessing 364, 365
data, loading for dynamic routes 366, 367
layouts & nested routes,

working with 334-338
loaders 367, 368
NavLink component, using 338-340
package 326
page navigation, adding 329-333
requests 367, 368
route component, versus normal

component 340, 342
used, for loading data 361-363

Index512

React Server Components
(RSC)s 175, 407, 425, 429, 430

advantages 432
client components, combining 444
client components, using in server

components 445, 446
components, building 431, 432
creating 433
project, setting up 438, 439
server components, rendering via

props 449, 450
server components, using in client

component 447, 448
unlocking, in React Projects 433-438
using 433
versus client components 440
versus server-side rendering (SSR) 439, 440

Real DOM
versus virtual DOM 239-241

redirection 351
lazy loading 352-354
Undefined Routes, handling 352

reducer function 291, 293
Redux

reference link 497
Refs

controlled component, versus uncontrolled
component 160-163

in custom components 154-160
usage, considerations 146-148
using, for accessing DOM elements 151-154
versus state 149-151

request property 367
resources 498
response interface

reference link 364
rest property 50

root component 24
route component

versus normal component 341, 342
routes

defining 326-329
routing 10, 327, 360

S
scoped styles

with CSS modules 132-134
server actions 214, 429, 453-459

defining 454, 455
project, setting up 438, 439
storing, in separate files 460, 461
triggering 454, 455
unlocking, in React projects 453
used, for handling data mutations 453

server-client boundaries 440
server-side data fetching

problem 430
server-side rendering (SSR) 368, 403, 404, 429

adding, to React application 404
data fetching 405, 407
versus React Server Components

(RSC)s 439, 440
shopping cart

building 495
short-circuiting 97
side effects 176, 177

dealing, with useEffect() Hook 179, 180
reference link 176

simple calculator
building 85, 86
enhancing 86, 87

single-page applications
(SPAs) 10, 11, 119, 326, 402

spread operator 50, 129

Index 513

state
updating 62, 63
useState() 63, 64

state batching 241, 242
state management

with useReducer() 291
state slices 68
state values

form submission, working with 79, 80
forms, working with 79, 80
lifting up 81-84
using 76-78

static content 34
strict mode 261

reference link 23
styled-components library 135-137

reference link 137
Suspense for data fetching 488

used, for displaying Granular Fallback
Content 468, 469

with Next.js 469-472
Suspense in React Projects

data sources, setting up 476
rendering process 474, 475
Suspense for data fetching, using with

support libraries 476-478
use() 478-480
useEffect() 473, 474
using 472

Suspense usage patterns 483
content, nesting 486
content, revealing 484, 485

synchronous actions
versus asynchronous actions 216

syntactical sugar 27

T
tagged templates 135
Tailwind CSS library for styling 137-139
TanStack Query 476

reference link 497
techniques, of rendering content

conditionally 94-98
JavaScript logical operators, abusing 96, 97
ternary expressions, using 94-96

template literal 348
ternary expressions 94, 96
transitions 217, 218
transpilation process 120
two-way binding 75, 76
TypeScript

reference link 498
using 498

U
UI state

updating, with useActionState() 219-221
uncontrolled components

versus controlled components 160-163
uniform resource locators (URLs) 325
Unnecessary Code Download

avoiding 255
lazy loading 255-261

use() 478-480
in client components 482, 483
with Next.js promises 480-482

useActionState() 457-459
used, for managing Pending UI state 222-224
used, for updating UI state 219-221

use client directive 442-444

Index514

useEffect()
used, for data fetching 488
used, for dealing side effects 179, 180
using 180, 181

useFormStatus()
used, for handling Pending UI state 224, 225

useLoaderData() 364
useMemo() 249
useOptimistic() 228
useParams() Hook 374
useReducer() 291

actions, dispatching 293-296
reducer function 291, 293
used, for state management 291

User Input
event object 211, 212
extracting 208
handling 455, 456
refs 210, 211
state, tracking 209, 210

user interface (UI)
updating 455, 456

useRouteLoaderData() Hook 374

V
vanilla JavaScript 1, 28

issues 2-5
virtual DOM 29

costly computations, avoiding 247-250
React compiler, using 253, 254
state batching 241, 242
unnecessary child component evaluations,

avoiding 242-247
useCallback(), utilizing 251-253
versus real DOM 239, 240

Vite
used, for creating React Project 11-13

Vite-based React router app
migrating 426-428

W
web components 27
wrapper component 127

Z
Zustand

reference link 497

Download the Free PDF and Supplementary Content
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

Additionally, with this book you get access to supplementary/bonus content for you to learn more. You
can use this to add on to your learning journey on top of what you have in the book.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/supplementary-content-9781836202271

2.	 Submit your proof of purchase.
3.	 Submit your book code. You can find the code on page no. 169 of the book.
4.	 That’s it! We’ll send your free PDF, supplementary content, and other benefits to your email

directly

Description of Supplementary Content
This book comes with the following bonus material (claimable via the mechanism described above):

•	 A cheatsheet accompanying every chapter of the book
•	 A video in which author Maximilian gives you his recommendations for next steps after fin-

ishing this book
•	 A video in which author Maximilian shares his thoughts about the future of React

https://packt.link/supplementary-content-9781836202271

	Cover
	Copyright Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: React – What and Why
	Introduction
	What is React?
	The Problem with “Vanilla JavaScript”
	React and Declarative Code
	How React Manipulates the DOM

	Introducing SPAs
	Creating a React Project with Vite

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Chapter 2: Understanding React Components and JSX
	Introduction
	What Are Components?
	Why Components?
	The Anatomy of a Component
	What Exactly Are Component Functions?

	What Does React Do with All These Components?
	Built-In Components
	Naming Conventions

	JSX vs HTML vs Vanilla JavaScript
	Using React without JSX
	JSX Elements Are Treated Like Regular JavaScript Values
	JSX Elements Must Have a Closing Tag

	Moving Beyond Static Content
	Outputting Dynamic Content
	Rendering Images

	When Should You Split Components?
	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 2.1: Creating a React App to Present Yourself
	Activity 2.2: Creating a React App to Log Your Goals for This Book

	Chapter 3: Components and Props
	Introduction
	Can Components Do More?
	Using Props in Components
	Passing Props to Components
	Consuming Props in a Component

	Components, Props, and Reusability
	The Special “children” Prop
	Which Components Need Props?
	How to Deal with Multiple Props
	Spreading Props
	Prop Chains/Prop Drilling

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 3.1: Creating an App to Output Your Goals for This Book

	Chapter 4: Working with Events and State
	Introduction
	What’s the Problem?
	How Not to Solve the Problem
	A Better Incorrect Solution
	Improving the Solution by Properly Reacting to Events

	Updating State Correctly
	A Closer Look at useState()
	A Look Under the Hood of React

	Working with Multiple State Values
	Using Multiple State Slices
	Managing Merged State Objects
	Updating State Based on Previous State Correctly
	Two-Way Binding

	Deriving Values from State
	Working with Forms and Form Submission
	Lifting State Up

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 4.1: Building a Simple Calculator
	Activity 4.2: Enhancing the Calculator

	Chapter 5: Rendering Lists and Conditional Content
	Introduction
	What Are Conditional Content and List Data?
	Rendering Content Conditionally
	Different Ways of Rendering Content Conditionally
	Utilizing Ternary Expressions
	Abusing JavaScript Logical Operators
	Get Creative!
	Which Approach is Best?

	Setting Element Tags Conditionally

	Outputting List Data
	Mapping List Data
	Updating Lists
	A Problem with List Items
	Keys to the Rescue!

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 5.1: Showing a Conditional Error Message
	Activity 5.2: Outputting a List of Products

	Chapter 6: Styling React Apps
	Introduction
	How Does Styling Work in React Apps?
	Using Inline Styles
	Setting Styles via CSS Classes
	Setting Styles Dynamically
	Conditional Styles
	Combining Multiple Dynamic CSS Classes
	Merging Multiple Inline Style Objects
	Building Components with Customizable Styles
	Customization with Fixed Configuration Options

	The Problem with Unscoped Styles
	Scoped Styles with CSS Modules
	The styled-components Library
	Use the Tailwind CSS Library for Styling
	Using Other CSS or JavaScript Styling Libraries and Frameworks

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 6.1: Providing Input Validity Feedback upon Form Submission
	Activity 6.2: Using CSS Modules for Style Scoping

	Chapter 7: Portals and Refs
	Introduction
	A World without Refs
	Refs versus State
	Using Refs for More than DOM Access
	Refs in Custom Components
	Controlled versus Uncontrolled Components

	React and Where Things End up in the DOM
	Portals to the Rescue

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Have Learned
	Activity 7.1: Extract User Input Values
	Activity 7.2: Add a Side Drawer

	Chapter 8: Handling Side Effects
	Introduction
	What’s the Problem?
	Understanding Side Effects
	Side Effects Are Not Just about HTTP Requests

	Dealing with Side Effects with the useEffect() Hook
	How to Use useEffect()

	Effects and Their Dependencies
	Unnecessary Dependencies
	Cleaning Up after Effects
	Dealing with Multiple Effects
	Functions as Dependencies
	Avoiding Unnecessary Effect Executions
	Effects and Asynchronous Code
	Rules of Hooks

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 8.1: Building a Basic Blog

	Chapter 9: Handling User Input & Forms with Form Actions
	Introduction
	Handling Form Submissions without Actions
	Extracting User Input
	Tracking State
	Relying on Refs
	Taking Advantage of the event Object

	Which Solution Is Best?

	Handling Form Submissions with Actions
	Synchronous vs Asynchronous Actions

	Behind the Scenes: Actions Are Transitions
	Managing State Based on Form Submissions
	Updating UI State with useActionState()
	Managing Pending UI State with useActionState()

	Handling Pending UI State with useFormStatus()

	Performing Optimistic Updates
	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 9.1: Managing a Feedback Form

	Chapter 10: Behind the Scenes of React and Optimization Opportunities
	Introduction
	Revisiting Component Evaluations and Updates
	What Happens When a Component Function Is Called

	The Virtual DOM vs the Real DOM
	State Batching
	Avoiding Unnecessary Child Component Evaluations
	Avoiding Costly Computations
	Utilizing useCallback()
	Using the React Compiler

	Avoiding Unnecessary Code Download
	Reducing Bundle Sizes via Code Splitting (Lazy Loading)

	Strict Mode
	Debugging Code and the React Developer Tools
	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 10.1: Optimize an Existing App

	Chapter 11: Working with Complex State
	Introduction
	A Problem with Cross-Component State
	Using Context to Handle Multi-Component State
	Providing and Managing Context Values
	Using Context in Nested Components
	Changing Context from Nested Components

	Using the Context API Efficiently
	Getting Better Code Completion
	Context or Lifting State Up?
	Outsourcing Context Logic into Separate Components
	Combining Multiple Contexts

	Limitations of useState()
	Managing State with useReducer()
	Understanding Reducer Functions
	Dispatching Actions

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 11.1: Migrating an App to the Context API
	Activity 11.2: Replacing useState() with useReducer()

	Chapter 12: Building Custom React Hooks
	Introduction
	Introducing Custom Hooks
	Why Would You Build Custom Hooks?
	A First Custom Hook

	Custom Hooks: A Flexible Feature
	Custom Hooks and Parameters
	Custom Hooks and Return Values

	A More Complex Example
	Building a First Version of the Custom Hook
	Making the Hook Useful by Returning Values
	Improving Reusability by Accepting an Input Parameter

	Using Custom Hooks for Context Access
	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 12.1: Build a Custom Keyboard Input Hook

	Chapter 13: Multipage Apps with React Router
	Introduction
	One Page Is Not Enough
	Getting Started with React Router and Defining Routes
	Adding Page Navigation
	Working with Layouts & Nested Routes
	From Link to NavLink
	Route Components versus “Normal” Components

	From Static to Dynamic Routes
	Extracting Route Parameters
	Creating Dynamic Links
	Navigating Programmatically

	Redirecting
	Handling Undefined Routes
	Lazy Loading

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 13.1: Creating a Basic Three-Page Website

	Chapter 14: Managing Data with React Router
	Introduction
	Data Fetching and Routing Are Tightly Coupled
	Sending HTTP Requests without React Router

	Loading Data with React Router
	Getting Access to Loaded Data
	Loading Data for Dynamic Routes
	Loaders, Requests, and Client-Side Code

	Layouts Revisited
	Reusing Data across Routes

	Handling Errors
	Onward to Data Submission
	Working with action() and Form Data
	Returning Data Instead of Redirecting
	Controlling Which <Form> Triggers Which Action
	Reflecting the Current Navigation Status
	Submitting Forms Programmatically
	Behind-the-Scenes Data Fetching and Submission
	Deferring Data Loading

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 14.1: A To-Dos App

	Chapter 15: Server-side Rendering & Building Fullstack Apps with Next.js
	Introduction
	What’s the Problem with Client-Side React Apps?
	Making Sense of Server-side Rendering (SSR)
	Adding SSR to a React Application
	Server-side Data Fetching Is Not Trivial

	Introducing Next.js
	Creating Next.js Projects
	Working with File-Based Routes
	Server-side Rendering with Next.js
	Working with Layouts
	Managing Internal Navigation
	Highlighting Active Links & Using the “use client” Directive

	Creating & Using Regular Components
	Handling Dynamic Routes
	Other Filename Conventions

	Diving Deeper into Next.js
	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 15.1: Migrating a Vite-Based React Router App

	Chapter 16: React Server Components & Server Actions
	Introduction
	The Problem with Server-side Data Fetching
	Introducing RSCs
	Making Sense of RSCs
	Creating & Using RSCs
	Unlocking RSCs in React Projects
	RSCs and Server Actions Can’t Be Used in All Projects
	RSCs vs Server-side Rendering
	RSCs vs Client Components
	Not All Components Should Be RSCs
	‘use client’ Affects Child Components, Too!
	Combining RSCs and Client Components

	Advanced Data Fetching with Next.js
	Managing Loading States with Next.js

	From Data Fetching to Data Mutations
	Handling Data Mutations with Server Actions
	Unlocking Server Actions in React Projects
	Defining and Triggering Server Actions
	Handling User Input & Updating the UI
	Server Actions and useActionState()
	Storing Server Actions in Separate Files

	Summary and Key Takeaways
	What’s Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 16.1: Build a Mini Blog

	Chapter 17: Understanding React Suspense & The use() Hook
	Introduction
	Showing Granular Fallback Content with Suspense
	Using Suspense for Data Fetching with Next.js
	Using Suspense in Other React Projects—Possible, But Tricky
	Suspense Does Not Work with useEffect()
	Fetching Data while Rendering—the Incorrect Way
	Getting Suspense Support Is Tricky
	Using Suspense for Data Fetching with Supporting Libraries
	use()ing Data while Rendering

	Suspense Usage Patterns
	Revealing Content Together
	Revealing Content as Soon as Possible
	Nesting Suspended Content

	Should You Fetch Data via Suspense or useEffect()?
	Summary and Key Takeaways
	What’s Next?

	Test Your Knowledge!
	Apply What You Learned
	Activity 17.1: Implement Suspense in the Mini Blog

	Chapter 18: Next Steps and Further Resources
	Introduction
	How Should You Proceed?
	Become a Fullstack React Developer
	Interesting Problems to Explore
	Build a Shopping Cart
	Build an Application’s Authentication System (User Signup and Login)
	Build an Event Management Website

	Common and Popular React Libraries
	Using TypeScript
	Other Resources
	Beyond React for Web Applications

	Final Words

	Packt Page
	Other Books You May Enjoy
	Index

